Boost of Gas Adsorption Kinetics of Covalent Organic Frameworks via Ionic Liquid Solution Process
Jie Fu
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorJia-Ying Liu
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorGuo-Hao Zhang
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorQiu-Hong Zhu
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorShuang-Long Wang
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorSong Qin
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Ling He
College of Chemistry, Sichuan University, Chengdu, 610064 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guo-Hong Tao
College of Chemistry, Sichuan University, Chengdu, 610064 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJie Fu
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorJia-Ying Liu
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorGuo-Hao Zhang
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorQiu-Hong Zhu
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorShuang-Long Wang
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorSong Qin
College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Ling He
College of Chemistry, Sichuan University, Chengdu, 610064 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guo-Hong Tao
College of Chemistry, Sichuan University, Chengdu, 610064 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Adsorption, storage, and conversion of gases (e.g., carbon dioxide, hydrogen, and iodine) are the three critical topics in the field of clean energy and environmental mediation. Exploring new methods to prepare high-performance materials to improve gas adsorption is one of the most concerning topics in recent years. In this work, an ionic liquid solution process (ILSP), which can greatly improve the adsorption kinetic performance of covalent organic framework (COF) materials for gaseous iodine, is explored. Anionic COF TpPaSO3H is modified by amino-triazolium cation through the ILSP method, which successfully makes the iodine adsorption kinetic performance (K80% rate) of ionic liquid (IL) modified COF AC4tirmTpPaSO3 quintuple compared with the original COF. A series of experimental characterization and theoretical calculation results show that the improvement of adsorption kinetics is benefited from the increased weak interaction between the COF and iodine, due to the local charge separation of the COF skeleton caused by the substitution of protons by the bulky cations of ILs. This ILSP strategy has competitive help for COF materials in the field of gas adsorption, separation, or conversion, and is expected to expand and improve the application of COF materials in energy and environmental science.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202302570-sup-0001-SuppMat.pdf820.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Dong, X. Han, Y. Liu, H. Li, Y. Cui, Angew. Chem., Int. Ed. 2020, 59, 13722.
- 2Q. Yang, M. Luo, K. Liu, H. Cao, H. Yan, Appl. Catal., B 2020, 276, 119174.
- 3Y. Chen, Y. Wang, C. Yang, S. Wang, J. Yang, J. Li, ACS Sustainable Chem. Eng. 2017, 5, 5082.
- 4M. Molina-Sabio, J. C. González, F. Rodrı́guez-Reinoso, Carbon 2004, 42, 448.
- 5C.-C. Huang, H.-S. Li, C.-H. Chen, J. Hazard. Mater. 2008, 159, 523.
- 6A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.
- 7W. Ma, Q. Zheng, Y. He, G. Li, W. Guo, Z. Lin, L. Zhang, J. Am. Chem. Soc. 2019, 141, 18271.
- 8Y. Li, W. Chen, G. Xing, D. Jiang, L. Chen, Chem. Soc. Rev. 2020, 49, 2852.
- 9H. V. Babu, M. G. M. Bai, M. Rajeswara Rao, ACS Appl. Mater. Interfaces 2019, 11, 11029.
- 10Z. Li, L. Sheng, H. Wang, X. Wang, M. Li, Y. Xu, H. Cui, H. Zhang, H. Liang, H. Xu, X. He, J. Am. Chem. Soc. 2021, 143, 92.
- 11Y. Tao, W. Ji, X. Ding, B.-H. Han, J. Mater. Chem. A 2021, 9, 7336.
- 12Z. Wang, Q. Zhu, J. Wang, F. Jin, P. Zhang, D. Yan, P. Cheng, Y. Chen, Z. Zhang, Sci. China: Chem. 2022, 65, 2144.
- 13H.-L. Qian, Y. Wang, X.-P. Yan, TrAC, Trends Anal. Chem. 2022, 147, 116516.
- 14Y. Liu, W. Zhou, W. L. Teo, K. Wang, L. Zhang, Y. Zeng, Y. Zhao, Chem 2020, 6, 3172.
- 15G. He, R. Zhang, Z. Jiang, Acc. Mater. Res. 2021, 2, 630.
- 16J. L. Segura, S. Royuela, M. Mar Ramos, Chem. Soc. Rev. 2019, 48, 3903.
- 17H. Ding, A. Mal, C. Wang, Mater. Chem. Front. 2020, 4, 113.
- 18S. P. S. Fernandes, V. Romero, B. Espiña, L. M. Salonen, Chem. - Eur. J. 2019, 25, 6461.
- 19X. Guan, H. Li, Y. Ma, M. Xue, Q. Fang, Y. Yan, V. Valtchev, S. Qiu, Nat. Chem. 2019, 11, 587.
- 20Y. Yusran, X. Guan, H. Li, Q. Fang, S. Qiu, Natl. Sci. Rev. 2020, 7, 170.
- 21A. Nagai, Z. Guo, X. Feng, S. Jin, X. Chen, X. Ding, D. Jiang, Nat. Commun. 2011, 2, 536.
- 22Y. Yang, M. Faheem, L. Wang, Q. Meng, H. Sha, N. Yang, Y. Yuan, G. Zhu, ACS Cent. Sci. 2018, 4, 748.
- 23Q. Lu, Y. Ma, H. Li, X. Guan, Y. Yusran, M. Xue, Q. Fang, Y. Yan, S. Qiu, V. Valtchev, Angew. Chem., Int. Ed. 2018, 57, 6042.
- 24K. Goossens, K. Lava, C. W. Bielawski, K. Binnemans, Chem. Rev. 2016, 116, 4643.
- 25R. A. Maia, B. Louis, S. A. Baudron, CrystEngComm 2021, 23, 5016.
- 26R. Zhao, H. Wu, L. Yang, Y. Ren, Y. Liu, Z. Qu, Y. Wu, L. Cao, Z. Chen, Z. Jiang, J. Membr. Sci. 2020, 600, 117841.
- 27B.-J. Yao, W.-X. Wu, L.-G. Ding, Y.-B. Dong, J. Org. Chem. 2021, 86, 3024.
- 28Y. Zhang, D.-H. Yang, S. Qiao, B.-H. Han, Langmuir 2021, 37, 10330.
- 29Y. Wang, W. L. Yuan, L. Zhang, Z. Zhang, G. H. Zhang, S. L. Wang, L. He, G. H. Tao, Adv. Sustainable Syst. 2020, 4, 2000046.
- 30G.-H. Zhang, Q.-H. Zhu, L. Zhang, F. Yong, Z. Zhang, S.-L. Wang, Y. Wang, L. He, G.-H. Tao, Nat. Commun. 2020, 11, 1653.
- 31Q.-H. Zhu, G.-H. Zhang, L. Zhang, J. Fu, Y.-R. Zhou, Y.-Q. Xiang, L. Ma, G.-H. Tao, L. He, Chem. Eng. J. 2022, 449, 137788.
- 32L. Zhang, G. H. Tao, C. M. Xu, G. H. Zhang, L. He, Small 2020, 16, 2000930.
- 33J. Fu, L. Zhang, S.-L. Wang, W.-L. Yuan, G.-H. Zhang, Q.-H. Zhu, H. Chen, L. He, G.-H. Tao, J. Hazard. Mater. 2022, 425, 127981.
- 34L. Zhang, S.-L. Wang, Y. Tan, G.-H. Tao, W.-L. Yuan, J. Fu, G.-H. Zhang, L. He, G. Tao, J. Hazard. Mater. 2022, 430, 128490.
- 35Q.-H. Zhu, G.-H. Zhang, W.-L. Yuan, S.-L. Wang, L. He, F. Yong, G.-H. Tao, Chem. Commun. 2019, 55, 13661.
- 36G.-H. Zhang, L. Zhang, Q.-H. Zhu, H. Chen, W.-L. Yuan, J. Fu, S.-L. Wang, L. He, G.-H. Tao, ACS Mater. Lett. 2021, 4, 136.
10.1021/acsmaterialslett.1c00687 Google Scholar
- 37C. R. DeBlase, K. E. Silberstein, T.-T. Truong, H. D. Abruña, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821.
- 38J. H. Advani, A. S. Singh, N.-u. H. Khan, H. C. Bajaj, A. V. Biradar, Appl. Catal., B 2020, 268, 118456.
- 39N. A. Lange, Lange's Handbook of Chemistry, 15th ed., Vol. 7.5, McGraw-Hill Professional Publishing, Knoxville, TN 2000.
- 40M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.
- 41S. Haldar, K. Roy, R. Kushwaha, S. Ogale, R. Vaidhyanathan, Adv. Energy Mater. 2019, 9, 1902428.
- 42G. Li, K. Zhang, T. Tsuru, ACS Appl. Mater. Interfaces 2017, 9, 8433.
- 43T. Chen, B. Li, W. Huang, C. Lin, G. Li, H. Ren, Y. Wu, S. Chen, W. Zhang, H. Ma, Sep. Purif. Technol. 2021, 256, 117787.
- 44G.-h. Tao, M. Zou, X.-h. Wang, Z.-y. Chen, D. G. Evans, Y. Kou, Aust. J. Chem. 2005, 58, 327.
- 45X. Li, H. Xiong, Q. Jia, ACS Appl. Mater. Interfaces 2019, 11, 46205.
- 46Y. Zhao, X. Liu, Y. Li, M. Xia, T. Xia, H. Sun, Z. Sui, X.-M. Hu, Q. Chen, Microporous Mesoporous Mater. 2021, 319, 111046.
- 47X. Guo, Y. Li, M. Zhang, K. Cao, Y. Tian, Y. Qi, S. Li, K. Li, X. Yu, L. Ma, Angew. Chem., Int. Ed. 2020, 59, 22697.
- 48L. He, L. Chen, X. Dong, S. Zhang, M. Zhang, X. Dai, X. Liu, P. Lin, K. Li, C. Chen, T. Pan, F. Ma, J. Chen, M. Yuan, Y. Zhang, L. Chen, R. Zhou, Y. Han, Z. Chai, S. Wang, Chem 2021, 7, 699.
- 49Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, J. Shen, Y. Cai, C. Zhou, I. Pinnau, Y. Han, Angew. Chem., Int. Ed. 2021, 60, 22432.
- 50P. H. Svensson, L. Kloo, Chem. Rev. 2003, 103, 1649.
- 51Y. Zhu, Y. Qi, X. Guo, M. Zhang, Z. Jia, C. Xia, N. Liu, C. Bai, L. Ma, Q. Wang, J. Mater. Chem. A 2021, 9, 16961.
- 52Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, W. A. Maksoud, L. Zhao, L. Cavallo, I. Pinnau, Y. Han, Nat. Commun. 2022, 13, 2878.
- 53C. Liu, Y. Jin, Z. Yu, L. Gong, H. Wang, B. Yu, W. Zhang, J. Jiang, J. Am. Chem. Soc. 2022, 144, 12390.
- 54L. Zhang, S.-L. Wang, G.-H. Zhang, N. Shen, H. Chen, G. Tao, G.-H. Tao, F. Yong, J. Fu, Q.-H. Zhu, L. He, Cell Rep. Phys. Sci. 2022, 3, 101114.
- 55F. Zhou, Y. Liu, Z. Wang, T. Lu, Q. Yang, Y. Liu, B. Zheng, Phys. Chem. Chem. Phys. 2019, 21, 15310.
- 56T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.