One-Dimensional Chiral Copper Iodide Chain-Like Structure Cu4I4(R/S-3-quinuclidinol)3 with Near-Unity Photoluminescence Quantum Yield and Efficient Circularly Polarized Luminescence
Corresponding Author
Jian Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXin Pan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorXuanyu Zhang
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorChen Sun
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorCongcong Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorXiaoqin Ji
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorRui Chen
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Lingling Mao
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jian Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXin Pan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorXuanyu Zhang
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorChen Sun
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorCongcong Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorXiaoqin Ji
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorRui Chen
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Lingling Mao
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Chiral organic−inorganic hybrid metal halide materials have shown great potential for circularly polarized luminescence (CPL) related applications for their tunable structures and efficient emissions. Here, this work combines the highly emissive Cu4I4 cubane cluster with chiral organic ligand R/S-3-quinuclidinol, to construct a new type of 1D Cu-I chains, namely Cu4I4(R/S-3-quinuclidinol)3, crystallizing in noncentrosymmetric monoclinic P21 space group. These enantiomorphic hybrids exhibit long-term stability and show bright yellow emission with a photoluminescence quantum yield (PLQY) close to 100%. Due to the successful chirality transfer from the chiral ligands to the inorganic backbone, the enantiomers show intriguing chiroptical properties, such as circular dichroism (CD) and CPL. The CPL dissymmetry factor (glum) is measured to be ≈4 × 10−3. Time-resolved photoluminescence (PL) measurements show long averaged decay lifetime up to 10 µs. The structural details within the Cu4I4 reveal the chiral nature of these basic building units, which are significantly different than in the achiral case. This discovery provides new structural insights for the design of high performance CPL materials and their applications in light emitting devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202300938-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
smll202300938-sup-0002-SuppMat.zip256.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y.-T. Sang, J.-L. Han, T.-H. Zhao, P.-F. Duan, M.-H. Liu, Adv. Mater. 2020, 32, 1900110.
- 2X.-B. Wang, Y. Wang, W.-Y. Gao, L. Song, C.-X. Ran, Y.-H. Chen, W. Huang, Adv. Mater. 2021, 33, 2003615.
- 3Z.-G. Wu, H.-B. Han, Z.-P. Yan, X.-F. Luo, Y. Wang, Y.-X. Zheng, J.-L. Zuo, Y. Pan, Adv. Mater. 2019, 31, 1900524.
- 4F. Zinna, M. Pasini, F. Galeotti, C. Botta, L. Di Bari, U. Giovanella, Adv. Funct. Mater. 2017, 27, 1603719.
- 5H. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47, 3184.
- 6F. Zinna, U. Giovanella, L. Di Bari, Adv. Mater. 2015, 27, 1791.
- 7Y. Yang, R. C. da Costa, M. J. Fuchter, A. J. Campbell, Nat. Photonics 2013, 7, 634.
- 8C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, J.-W. Pan, Nat. Photonics 2018, 4, 549.
- 9J.-Y. Wang, C. Zhang, H.-L. Liu, R. McLaughlin, Y.-X. Zhai, S. R. Vardeny, X.-J. Liu, S. McGill, D. Semenov, H.-W. Guo, R. Tsuchikawa, V. V. Deshpande, D.-L. Sun, V. Vardeny, Nat. Commun. 2019, 10, 129.
- 10Y.-H. Kim, Y.-X. Zhai, H.-P. Lu, X. Pan, C.-X. Xiao, E. A. Gaulding, S. P. Harvey, J. J. Berry, Z. V. Vardeny, J. M. Luther, M. C. Beard, Science 2021, 371, 1129.
- 11M. C. Heffern, L. M. Matosziuk, T. J. Meade, Chem. Rev. 2014, 114, 4496.
- 12G. Muller, Dalton Trans. 2009, 9692.
- 13S. C. J. Meskers, ChemPhotoChem 2022, 6, 20210015.
- 14T.-H. Zhao, J.-L. Han, P.-F. Duan, M.-H. Liu, Acc. Chem. Res. 2020, 53, 1279.
- 15T. Zhang, K. Xu, J. Li, L. He, D.-W. Fu, Q. Ye, R.-G. Xiong, Natl. Sci. Rev. 2022, 10, nwac240.
- 16G.-K. Long, R. Sabatini, M. I. Saidaminov, G. Lakhwani, A. Rasmita, X.-G. Liu, E. H. Sargent, W.-B. Gao, Nat. Rev. Mater. 2020, 5, 423.
- 17Y.-H. Shi, P.-F. Duan, S.-W. Huo, Y.-G. Li, M.-H. Liu, Adv. Mater. 2018, 30, 1705011.
- 18H.-L. Xuan, J.-L. Li, L.-J. Xu, D.-S. Zheng, Z.-N. Chen, Adv. Opt. Mater. 2022, 10, 2200591.
- 19J. Chen, S. Zhang, X. Pan, R.-Q. Li, S. Ye, A. K. Cheetham, L.-L. Mao, Angew. Chem., Int. Ed. 2022, 61, e202205906.
- 20Y. Wei, C. Li, Y.-W. Li, Z.-S. Luo, X.-L. Liu, L.-M. Zhang, X. He, W. Wang, Z.-W. Quan, Angew. Chem., Int. Ed. 2022, 61, e202212685.
- 21J. Wang, C. Fang, J.-Q. Ma, S. Wang, L. Jin, W.-C. Li, D.-H. Li, ACS Nano 2019, 13, 9473.
- 22J.-Q. Ma, C. Fang, C. Chen, L. Jin, J.-Q. Wang, S. Wang, J. Tang, D.-H. Li, ACS Nano 2019, 13, 3659.
- 23C. Han, A. J. Bradford, A. M. Z. Slawin, B. E. Bode, E. Fusco, S. L. Lee, C. C. Tang, P. Lightfoot, Inorg. Chem. 2021, 60, 11014.
- 24C. Han, A. J. Bradford, J. A. McNulty, W.-G. Zhang, P. S. Halasyamani, A. M. Z. Slawin, F. D. Morrison, S. L. Lee, P. Lightfoot, Chem. Mater. 2022, 34, 2458.
- 25C. Han, J. A. McNulty, A. J. Bradford, A. M. Z. Slawin, F. D. Morrison, S. L. Lee, P. Lightfoot, Inorg. Chem. 2022, 61, 3230.
- 26P. C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 1999, 99, 3625.
- 27X. Zhang, W. Liu, G. Z. Wei, D. Banerjee, Z.-C. Hu, J. Li, J. Am. Chem. Soc. 2014, 136, 14230.
- 28W. Liu, Y. Fang, J. Li, Adv. Funct. Mater. 2018, 28, 1705593.
- 29J. Troyano, F. Zamora, S. Delgado, Chem. Soc. Rev. 2021, 50, 4606.
- 30S.-X. Wang, E. E. Morgan, S. Panuganti, L.-L. Mao, P. Vishnoi, G. Wu, Q.-L. Liu, M. G. Kanatzidis, R. D. Schaller, R. Seshadri, Chem. Mater. 2022, 34, 3206.
- 31L.-L. Mao, J. Chen, P. Vishnoi, A. K. Cheetham, Acc. Mater. Res. 2022, 3, 439.
- 32W. Liu, Y. Fang, G. Z. Wei, S. J. Teat, K.-C. Xiong, Z.-C. Hu, W. P. Lustig, J. Li, J. Am. Chem. Soc. 2015, 137, 9400.
- 33W. Liu, K. Zhu, S. J. Teat, G. Dey, Z.-Q. Shen, L. Wang, D. M. O'Carroll, J. Li, J. Am. Chem. Soc. 2017, 139, 9281.
- 34L. Yao, G.-D. Niu, J.-Z. Li, L. Gao, X.-F. Luo, B. Xia, Y.-H. Liu, P.-P. Du, D.-H. Li, C. Chen, Y.-X. Zheng, Z.-W. Xiao, J. Tang, J. Phys. Chem. Lett. 2020, 11, 1255.
- 35J.-J. Wang, H.-T. Zhou, J.-N. Yang, L.-Z. Feng, J.-S. Yao, K.-H. Song, M.-M. Zhou, S. Jin, G.-Z. Zhang, H.-B. Yao, J. Am. Chem. Soc. 2021, 143, 10860.
- 36X.-Q. Ji, S.-N. Geng, S. Zhang, Y.-P. Gong, X.-Y. Zhang, R.-Q. Li, Y. Liu, J. Chen, R. Chen, Z.-W. Xiao, L.-L. Mao, Chem. Mater. 2022, 34, 8262.
- 37F. Ge, B.-H. Li, P.-X. Cheng, G. Li, Z.-F. Ren, J.-L. Xu, X.-H. Bu, Angew. Chem., Int. Ed. 2022, 61, e2021150.
- 38H. Kitagawa, Y. Ozawa, K. Toriumi, Chem. Commun. 2010, 46, 6302.
- 39S. Perruchas, X. F. Le Goff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T. Gacoin, J.-P. Boilot, J. Am. Chem. Soc. 2010, 132, 10967.
- 40X.-C. Shan, F.-L. Jiang, L. Chen, M.-Y. Wu, J. Pan, X.-Y. Wan, M.-C. Hong, J. Mater. Chem. C 2013, 1, 4339.
- 41F. Wei, X.-C. Liu, Z.-W. Liu, Z.-Q. Bian, Y.-L. Zhao, C.-H. Huang, CrystEngComm 2014, 16, 5338.
- 42S. Yuan, S.-S. Liu, D. Sun, CrystEngComm 2014, 16, 1927.
- 43Q. Benito, X. F. Le Goff, G. Nocton, A. Fargues, A. Garcia, A. Berhault, S. Kahlal, J.-Y. Saillard, C. Martineau, J. Trébosc, T. Gacoin, J.-P. Boilot, S. Perruchas, Inorg. Chem. 2015, 54, 4483.
- 44K. Xu, B.-L. Chen, R. Zhang, L. Liu, X.-X. Zhong, L. Wang, F.-Y. Li, G.-H. Li, K. A. Alamry, F.-B. Li, W.-Y. Wong, H.-M. Qin, Dalton Trans. 2020, 49, 5859.
- 45M. Pronold, M. Scheer, J. Wachter, M. Zabel, Inorg. Chem. 2007, 46, 1396.
- 46H. El Moll, M. Cordier, G. Nocton, F. Massuyeau, C. Latouche, C. Martineau-Corcos, S. Perruchas, Inorg. Chem. 2018, 57, 11961.
- 47E. Cariati, E. Lucenti, C. Botta, U. Giovanella, D. Marinotto, S. Righetto, Coord. Chem. Rev. 2016, 306, 566.
- 48X.-C. Shan, H.-B. Zhang, L. Chen, M.-Y. Wu, F.-L. Jiang, M.-C. Hong, Cryst. Growth Des. 2013, 13, 1377.
- 49J. P. Safko, J. E. Kuperstock, S. M. McCullough, A. M. Noviello, X.-B. Li, J. P. Killarney, C. Murphy, H. H. Patterson, C. A. Bayse, R. D. Pike, Dalton Trans. 2012, 41, 11663.
- 50Y. Fang, W. Liu, S. J. Teat, G. Dey, Z.-Q. Shen, L.-T. An, D.-C. Yu, L. Wang, D. M. O'Carroll, J. Li, Adv. Funct. Mater. 2017, 27, 1603444.
- 51B. Huitorel, H. El Moll, R. Utrera-Melero, M. Cordier, A. Fargues, A. Garcia, F. Massuyeau, C. Martineau-Corcos, F. Fayon, A. Rakhmatullin, S. Kahlal, J.-Y. Saillard, T. Gacoin, S. Perruchas, Inorg. Chem. 2018, 57, 4328.
- 52B. Huitorel, R. Utrera-Melero, F. Massuyeau, J.-Y. Mevelec, B. Baptiste, A. Polian, T. Gacoin, C. Martineau-Corcos, S. Perruchas, Dalton Trans. 2019, 48, 7899.
- 53Q.-S. Hu, C.-K. Zhang, X. Wu, G.-J. Liang, L. Wang, X.-W. Niu, Z. Wang, W.-D. Si, Y.-B. Han, R.-Q. Huang, J.-W. Xiao, D. Sun, Angew. Chem., Int. Ed. 2023, 62, e202217784.
- 54A. Bondi, J. Phys. Chem. 1964, 68, 441.
- 55H.-X. Miao, X.-C. Pan, M. Li, W.-J. Zhaxi, J. Wu, Z.-T. Huang, L.-Y. Liu, X. Ma, S.-L. Jiang, W. Huang, Q. Zhang, D.-Y. Wu, Inorg. Chem. 2022, 61, 18779.
- 56P. P. Mazzeo, L. Maini, A. Petrolati, V. Fattori, K. Shankland, D. Braga, Dalton Trans. 2014, 43, 9448.
- 57L. Yan, M. K. Jana, P. C. Sercel, D. B. Mitzi, W. You, J. Am. Chem. Soc. 2021, 143, 18114.
- 58H. Ren, Y. Wu, C.-C. Wang, Y. Yan, J. Phys. Chem. Lett. 2021, 12, 2676.
- 59P. C. Ford, A. Vogler, Acc. Chem. Res. 1993, 26, 220.
- 60M.-H. Bi, G.-H. Li, J. Hua, X.-M. Liu, Y.-W. Hu, Z. Shi, S.-H. Feng, CrystEngComm 2007, 9, 984.
- 61K.-H. Song, J.-J. Wang, L.-Z. Feng, F.-X. He, Y.-C. Yin, J.-N. Yang, Y.-H. Song, Q. Zhang, X.-C. Ru, Y.-F. Lan, G.-Z. Zhang, H.-B. Yao, Angew. Chem., Int. Ed. 2022, 61, e202208960.
- 62M. Hu, F.-Y. Ye, C. Du, W.-Z. Wang, T.-T. Zhou, M.-L. Gao, M.-H. Liu, Y.-S. Zheng, ACS Nano 2021, 15, 16673.
- 63H. Tsumatori, T. Harada, J. Yuasa, Y. Hasegawa, T. Kawai, Appl. Phys. Express 2011, 4, 011601.
- 64J. I. Bruce, D. Parker, S. Lopinski, R. D. Peacock, Chirality 2002, 14, 562.
- 65O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
- 66G. M. Scheldrick, Acta Crystallogr. 2015, A71, 3.
- 67G. M. Sheldrick, Acta Crystallogr. 2015, 71, 3.