S-1-O-phosphocholine-2-N-acetyl-octadecane induces apoptosis in T cells: Involvement of receptor activation and the intrinsic apoptotic pathway
Carolin Oberle
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Harald F. Krug
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
Forschungszentrum Karlsruhe in der Helmholtzgemeinschaft, Institut für Toxikologie und Genetik, Hermann-von-Helmholtz-Platz-1, 76344 Eggenstein-Leopoldshafen, Germany. Phone: +49-7247-82-3262, Fax: +49-7247-82-3557Search for more papers by this authorCarolin Oberle
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Harald F. Krug
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
Forschungszentrum Karlsruhe in der Helmholtzgemeinschaft, Institut für Toxikologie und Genetik, Hermann-von-Helmholtz-Platz-1, 76344 Eggenstein-Leopoldshafen, Germany. Phone: +49-7247-82-3262, Fax: +49-7247-82-3557Search for more papers by this authorAbstract
Alkylphosphocholines (APC) represent compounds with far-ranging biological activities including inhibition of neoplastic cell growth in vivo and in vitro. Here we introduce the apoptosis-inducing activity of a newly synthesised APC, the S-NC-2, in Jurkat T cells. The results point to a dual apoptotic mechanism, a death receptor dependent activation as well as a death receptor-independent and mitochondria related pathway. The participation of the CD95 death receptor was determined by immunohistochemistry. Receptor aggregation and capping was already induced after 2 h of treatment with S-NC-2. We further analysed phosphatidylserin externalisation, chromatin condensation, the cleavage of procaspases-8, -9 and -3 and the degradation of caspase substrates. Comparison of Jurkat wildtype with FADD- and caspase-8-deficient cells and, additionally, the Bcl-2 overexpressing variant revealed a more detailed model of the APC-induced apoptosis. The lack of FADD or caspase-8 resulted in a somehow decreased amount of apoptotic cells, whereas the overexpression of Bcl-2 leads to a complete reduction of apoptosis and caspase-activation. After stimulation of death receptors such as CD95, the amplification via intrinsic apoptotic pathways is strongly required in Type II T cells.
REFERENCES
- 1 Berggren , M.I. , Gallegos , A. , Dressler , L.A. , Modest , E.J. , Powis , G. (1993 ) Inhibition of the signalling enzyme phosphatidylinositol-3-kinase by antitumor ether lipid analogues. Cancer Res. 53 : 4297 –4302 .
- 2 Crul , M. , Rosing , H. , de Klerk , G.J. , Dubbelman , R. , Traiser , M. , Reichert , S. , Knebel , N.G. , Schellens , J.H. , Beijnen , J.H. , ten Bokkel Huinink , W.W. (2002 ) Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur. J. Cancer 38 : 1615 –1621 .
- 3 Noseda , A. , Berens , M.E. , White , J.G. , Modest , E.J. (1988 ) In vitro antiproliferative activity of combinations of ether lipid analogues and DNA-interactive agents against human tumor cells. Cancer Res. 48 : 1788 –1791 .
- 4 Vogler , W.R. (1994 ) Bone marrow purging in acute leukemia with alkyl-lysophospholipids: A new family of anticancer drugs. Leuk. Lymphoma 13 : 53 –60 .
- 5 Gajate , C. , Mollinedo , F. (2002 ) Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH(3) (edelfosine), a proapoptotic agent in tumor cells. Curr. Drug Metab. 3 : 491 –525 .
- 6 Ruiter , G.A. , Verheij , M. , Zerp , S.F. , van Blitterswijk , W.J. (2001 ) Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int. J. Radiat. Oncol. Biol. Phys. 49 : 415 –419 .
- 7 Smorenburg , C.H. , Seynaeve , C. , Bontenbal , M. , Planting , A.S. , Sindermann , H. , Verweij , J. (2000 ) Phase II study of miltefosine 6% solution as topical treatment of skin metastases in breast cancer patients. Anticancer Drugs 11 : 825 –828 .
- 8 Berger , M.R. , Betsch , B. , Gebelein , M. , Amtmann , E. , Heyl , P. , Scherf , H.R. (1993 ) Hexadecylphosphocholine differs from conventional cytostatic agents. J. Cancer Res. Clin. Oncol. 119 : 541 –548 .
- 9 Berkovic , D. , Sievers , S. , Haase , D. , Fleer , E.A. , Binder , C. (2002 ) Effects of hexadecylphosphocholine on phosphatidylcholine and phosphatidylserin metabolism in human lymphoma cells. J. Exp. Ther. Oncol. 2 : 85 .
- 10 Ergezinger , K. , Vehmeyer , K. , Unger , C. (1999 ) Stimulation of human hematopoietic progenitor cells by the alkylphosphocholines hexadecylphosphocholine and hexadecyl-N,N,N-trimethyl-hexanolamine. Anticancer Res. 19 : 3213 –3219 .
- 11 Croft , S.L. , Seifert , K. , Duchene , M. (2003 ) Antiprotozoal activities of phospholipid analogues. Mol. Biochem. Parasitol. 126 : 165 –172 .
- 12 Konstantinov , S.M. , Kaminsky , R. , Brun , R. , Berger , M.R. , Zillmann , U. (1997 ) Efficacy of anticancer alkylphosphocholines in Trypanosoma brucei subspecies. Acta Trop. 64 : 145 –154 .
- 13 Massing , U. , Eibl , H. (1994 ) Synthesis of enantiomerically pure 1-O-phosphocholine-2-O-acyl-octadecane and 1-O-phosphocholine-2-N-acyl-octadecane. Chem. Phys. Lipids 69 : 105 –120 .
- 14 Matzke , A. , Massing , U. , Krug , H.F. (2001 ) Killing tumour cells by alkylphosphocholines: evidence for involvement of CD95. Eur. J. Cell Biol. 80 : 1 –10 .
- 15 Kley , J.T. , Unger , C. , Massing , U. (1998 ) Inhibition of 14kDa PLA2 by 2-acylamino-alkylphospholipids: the influence of amide acidity. Biochim. Biophys. Acta 1392 : 193 –201 .
- 16 Cabaner , C. , Gajate , C. , Macho , A. , Munoz , E. , Modolell , M. , Mollinedo , F. (1999 ) Induction of apoptosis in human mitogen-activated peripheral blood T- lymphocytes by the ether phospholipid ET-18-OCH3: involvement of the Fas receptor/ligand system. Br. J. Pharmacol. 127 : 813 –825 .
- 17 Gajate , C. , Mollinedo , F. (2001 ) The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98 : 3860 –3863 .
- 18 Jendrossek , V. , Muller , I. , Eibl , H. , Belka , C. (2003 ) Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene 22 : 2621 –2631 .
- 19 Van der Luit , A.H. , Budde , M. , Ruurs , P. , Verheij , M. , van Blitterswijk , W.J. (2002 ) Alkyl-lysophospholipid accumulates in lipid rafts and Induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J. Biol. Chem . 277 : 39541 –7 .
- 20 Reed , J.C. (2001 ) Apoptosis-regulating proteins as targets for drug discovery. Trends Mol. Med. 7 : 314 –319 .
- 21 Zimmermann , K.C. , Bonzon , C. , Green , D.R. (2001 ) The machinery of programmed cell death. Pharmacol. Ther. 92 : 57 –70 .
- 22 Krammer , P.H. (2000 ) CD95's deadly mission in the immune system. Nature 407 : 789 –795 .
- 23 Wajant , H. (2002 ) The Fas signaling pathway: more than a paradigm. Science 296 : 1635 –1636 .
- 24 Papoff , G. , Hausler , P. , Eramo , A. , Pagano , M.G. , di Leve , G. , Signore , A. , Ruberti , G. (1999 ) Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J. Biol. Chem. 274 : 38241 –38250 .
- 25 Siegel , R.M. , Frederiksen , J.K. , Zacharias , D.A. , Chan , F.K. , Johnson , M. , Lynch , D. , Tsien , R.Y. , Lenardo , M.J. (2000 ) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288 : 2354 –2357 .
- 26 Kischkel , F.C. , Hellbardt , S. , Behrmann , I. , Germer , M. , Pawlita , M. , Krammer , P.H. , Peter , M.E. (1995 ) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14 : 5579 –5588 .
- 27 Peter , M.E. , Krammer , P.H. (2003 ) The CD95(APO-1/Fas) DISC and beyond. Cell Death. Differ. 10 : 26 –35 .
- 28 Ashkenazi , A. , Dixit , V.M. (1999 ) Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11 : 255 –260 .
- 29 Juo , P. , Woo , M.S. , Kuo , C.J. , Signorelli , P. , Biemann , H.P. , Hannun , Y.A. , Blenis , J. (1999 ) FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ. 10 : 797 –804 .
- 30 Van Gurp , M. , Festjens , N. , Van Loo , G. , Saelens , X. , Vandenabeele , P. (2003 ) Mitochondrial intermembrane proteins in cell death. Biochem. Biophys. Res. Commun. 304 : 487 –497 .
- 31 Acehan , D. , Jiang , X. , Morgan , D.G. , Heuser , J.E. , Wang , X. , Akey , C.W. (2002 ) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell. 9 : 423 –432 .
- 32 Juo , P. , Kuo , C.J. , Reynolds , S.E. , Konz , R.F. , Raingeaud , J. , Davis , R.J. , Biemann , H.P. , Blenis , J. (1997 ) Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. Mol. Cell Biol. 17 : 24 –35 .
- 33 Cremesti , A. , Paris , F. , Grassme , H. , Holler , N. , Tschopp , J. , Fuks , Z. , Gulbins , E. , Kolesnick , R. (2001 ) Ceramide enables fas to cap and kill. J. Biol. Chem. 276 : 23954 –23961 .
- 34
Gajate , C.
, Fonteriz , R.I.
, Cabaner , C.
, Alvarez-Noves , G.
, Alvarez-Rodriguez , Y.
, Modolell , M.
, Mollinedo , F.
(2000
) Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis.
Int. J. Cancer
85
: 674
–682
.
10.1002/(SICI)1097-0215(20000301)85:5<674::AID-IJC13>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 35 Evan , G. , Littlewood , T. (1998 ) A matter of life and cell death. Science 281 : 1317 –1322 .
- 36 Manfredi , J.J. (2003 ) p53 and apoptosis: it's not just in the nucleus anymore. Mol. Cell. 11 : 552 –554 .
- 37 Hilgard , P. , Stekar , J. , Voegeli , R. , Engel , J. , Schumacher , W. , Eibl , H. , Unger , C. , Berger , M.R. (1988 ) Characterization of the antitumor activity of hexadecylphosphocholine (D 18506). Eur. J. Cancer Clin. Oncol. 24 : 1457 –1461 .
- 38 Muschiol , C. , Berger , M.R. , Schuler , B. , Scherf , H.R., Garzon, F.T. , Zeller , W.J. , Unger , C. , Eibl , H.J. , Schmahl , D. (1987 ) Alkyl phosphocholines: toxicity and anticancer properties. Lipids 22 : 930 –934 .
- 39 Lucas , L. , Hernandez-Alcoceba , R. , Penalva , V. , Lacal , J.C. (2001 ) Modulation of phospholipase D by hexadecylphosphorylcholine: a putative novel mechanism for its antitumoral activity. Oncogene 20 : 1110 –1117 .
- 40 Berkovic , D. , Berkovic , K. , Fleer , E.A. , Eibl , H. , Unger , C. (1994 ) Inhibition of calcium-dependent protein kinase C by hexadecylphosphocholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine do not correlate with inhibition of proliferation of HL60 and K562 cell lines. Eur. J. Cancer 30A : 509 –515 .
- 41 Henke , J. , Engelmann , J. , Kutscher , B. , Nssner , G. , Engel , J. , Voegeli , R. , Leibfritz , D. (1999 ) Changes of intracellular calcium, fatty acids and phospholipids during miltefosine-induced apoptosis monitored by fluorescence- and 13C NMR-spectroscopy. Anticancer Res. 19 : 4027 –4032 .
- 42 Moffett , S. , Brown , D.A. , Linder , M.E. (2000 ) Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275 : 2191 –2198 .
- 43 Scaffidi , C. , Fulda , S. , Srinivasan , A. , Friesen , C. , Li , F. , Tomaselli , K.J. , Debatin , K.M. , Krammer , P.H. , Peter , M.E. (1998 ) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17 : 1675 –1687 .
- 44 Scaffidi , C. , Schmitz , I. , Zha , J. , Korsmeyer , S.J. , Krammer , P.H. , Peter , M.E. (1999 ) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem. 274 : 22532 –22538 .
- 45 Ferri , K.F. , Kroemer , G. (2001 ) Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3 : E255-E263 .
- 46 Thon , L. , Adam , D. (2002 ) Functional role of ceramide in caspase-independent cell death pathways. Signal Transduction 3–4 : 131 .
- 47 Brenner , B. , Ferlinz , K. , Grassme , H. , Weller , M. , Koppenhoefer , U. , Dichgans , J. , Sandhoff , K. , Lang , F. , Gulbins , E. (1998 ) Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ. 5 : 29 –37 .
- 48 Boya , P. , Andreau , K. , Poncet , D. , Zamzami , N. , Perfettini , J.L. , Metivier , D. , Ojcius , D.M. , Jaattela , M. , Kroemer , G. (2003 ) Lysosomal Membrane Permeabilization Induces Cell Death in a Mitochondrion-dependent Fashion. J. Exp. Med. 197 : 1323 –1334 .