Uniform stability of the inverse problem for the non-self-adjoint Sturm–Liouville operator
Corresponding Author
Natalia P. Bondarenko
Department of Mechanics and Mathematics, Saratov State University, Saratov, Russia
S. M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russia
Moscow Center of Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia
Correspondence
Natalia P. Bondarenko, Department of Mechanics and Mathematics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Natalia P. Bondarenko
Department of Mechanics and Mathematics, Saratov State University, Saratov, Russia
S. M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russia
Moscow Center of Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia
Correspondence
Natalia P. Bondarenko, Department of Mechanics and Mathematics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.
Email: [email protected]
Search for more papers by this authorAbstract
In this paper, we develop a new approach to investigation of the uniform stability for inverse spectral problems. We consider the non-self-adjoint Sturm–Liouville problem that consists in the recovery of the potential and the parameters of the boundary conditions from the eigenvalues and the generalized weight numbers. The special case of simple eigenvalues, as well as the general case with multiple eigenvalues, is studied. We find various subsets in the space of spectral data, on which the inverse mapping is Lipschitz continuous, and obtain the corresponding unconditional uniform stability estimates. Furthermore, the conditional uniform stability of the inverse problem under a priori restrictions on the potential is studied. In addition, we prove the uniform stability of the inverse problem by the Cauchy data, which are convenient for numerical reconstruction of the potential and for applications to partial inverse problems.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
REFERENCES
- 1T. Aktosun, Stability of the Marchenko inversion, Inverse Probl. 3 (1987), no. 4, 555–563.
- 2S. Albeverio, R. Hryniv, and Y. Mykytyuk, On spectra of non-self-adjoint Sturm–Liouville operators, Sel. Math. New Ser. 13 (2008), 571–599.
- 3A. A. Alekseev, Stability of the inverse Sturm–Liouville problem for a finite interval, Soviet Math. Dokl. 33 (1986), 299–301.
- 4M. Bledsoe, Stability of the inverse resonance problem on the line, Inverse Probl. 28 (2012), no. 10, 105003.
- 5N. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Probl. 33 (2017), no. 11, 115010.
- 6N. P. Bondarenko, Local solvability and stability of the inverse problem for the non-self-adjoint Sturm–Liouville operator, Bound. Value Probl. 2020 (2020), 123.
- 7N. P. Bondarenko and A. V. Gaidel, Solvability and stability of the inverse problem for the quadratic differential pencil, Mathematics. 9 (2021), no. 20, 2617.
- 8N. P. Bondarenko, Partial inverse Sturm–Liouville problems, Mathematics. 11 (2023), no. 10, 2408.
- 9N. P. Bondarenko, Uniform stability of the Hochstadt–Lieberman problem, Math. Notes. 117 (2025), no. 3, 357–365.
- 10N. P. Bondarenko and E. E. Chitorkin, Uniform stability of the inverse Sturm–Liouville problem with polynomials in a boundary condition, arXiv:2504.04203, https://doi.org/10.48550/arXiv.2504.04203.
10.48550/arXiv.2504.04203 Google Scholar
- 11G. Borg, Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78 (1946), 1–96 [in German].
- 12S. A. Buterin, On inverse spectral problem for non-selfadjoint Sturm–Liouville operator on a finite interval, J. Math. Anal. Appl. 335 (2007), no. 1, 739–749.
- 13S. A. Buterin, C.-T. Shieh, and V. A. Yurko, Inverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditions, Bound. Value Probl. 2013 (2013), 180.
- 14S. Buterin and M. Kuznetsova, On Borg’s method for non-selfadjoint Sturm–Liouville operators, Anal. Math. Phys. 9 (2019), 2133–2150.
- 15S. A. Buterin, A. E. Choque-Rivero, and M. A. Kuznetsova, On a regularization approach to the inverse transmission eigenvalue problem, Inverse Probl. 36 (2020), 105002.
- 16S. Buterin, Uniform full stability of recovering convolutional perturbation of the Sturm–Liouville operator from the spectrum, J. Differ. Equ. 282 (2021), 67–103.
10.1016/j.jde.2021.02.022 Google Scholar
- 17S. Buterin and N. Djuric, Inverse problems for Dirac operators with constant delay: uniqueness, characterization, uniform stability, Lobachevskii J. Math. 43 (2022), no. 6, 1492–1501.
- 18G. Freiling and V. Yurko, Inverse Sturm–Liouville problems and their applications, Nova Science Publishers, Huntington, NY, 2001.
- 19I. M. Gel'fand and B. M. Levitan, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 309–360.
- 20Y. Guo, L.-J. Ma, X.-C. Xu, and Q. An, Weak and strong stability of the inverse Sturm–Liouville problem, Math. Methods Appl. Sci. 46 (2023), no. 14, 15684–15705.
- 21M. Hitrik, Stability of an inverse problem in potential scattering on the real line, Commun. Partial Differ. Equ. 25 (2000), no. 5–6, 925–955.
- 22H. Hochstadt, On the well-posedness of the inverse Sturm–Liouville problems, J. Differ. Equ. 23 (1977), 402–413.
10.1016/0022-0396(77)90119-X Google Scholar
- 23M. Horváth and M. Kiss, Stability of direct and inverse eigenvalue problems for Schrödinger operators on finite intervals, Int. Math. Res. Not. 2010 (2010), no. 11, 2022–2063.
- 24R. O. Hryniv, Analyticity and uniform stability in the inverse singular Sturm–Liouville spectral problem, Inverse Probl. 27 (2011), 065011.
- 25R. O. Hryniv, Analyticity and uniform stability in the inverse spectral problem for Dirac operators, J. Math. Phys. 52 (2011), 063513.
- 26V. V. Kravchenko, Direct and inverse Sturm–Liouville problems, Birkhäuser, Cham, 2020.
10.1007/978-3-030-47849-0 Google Scholar
- 27M. Kuznetsova, Uniform stability of recovering Sturm–Liouville-type operators with frozen argument, Results Math. 78 (2023), no. 5, 169.
- 28B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two of its spectra, Russ. Math. Surv. 19 (1964), no. 2, 1–63.
10.1070/RM1964v019n02ABEH001145 Google Scholar
- 29B. M. Levitan, Inverse Sturm–Liouville problems, Nauka, Moscow, 1984 [in Russian]; English transl.: VNU Sci. Press, Utrecht, 1987.
- 30D. Sh. Lundina and V. A. Marchenko, A refinement of the inequalities which characterize the stability of the inverse problem of scattering theory, Math. USSR Sbornik. 7 (1969), no. 4, 467–476.
10.1070/SM1969v007n04ABEH001100 Google Scholar
- 31V. A. Marchenko, Concerning the theory of a differential operator of the second order, Dokl. Akad. Nauk SSSR. 72 (1950), no. 3, 457–460 [in Russian].
- 32V. A. Marchenko, Stability of the inverse problem in scattering theory, Math. USSR Sbornik. 6 (1968), no. 2, 125–148.
10.1070/SM1968v006n02ABEH001056 Google Scholar
- 33V. A. Marchenko and K. V. Maslov, Stability of the problem of recovering the Sturm–Liouville operator from the spectral function, Math. USSR Sbornik. 10 (1970), no. 4, 475–502.
10.1070/SM1970v010n04ABEH002160 Google Scholar
- 34V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of Hill's operator, Math. USSR-Sb. 26 (1975), no. 4, 493–554.
10.1070/SM1975v026n04ABEH002493 Google Scholar
- 35V. A. Marchenko, Sturm–Liouville operators and their applications, Naukova Dumka, Kiev, 1977 [in Russian]; English transl.: Birkhäuser, Basel, 1986.
- 36V. A. Marchenko and I. V. Ostrovskii, Approximation of periodic potentials by finite zone potentials, Vestn. Kharkov. Gos. Univ., Prikl. Mat. Mekh. 205 (1980), no. 45, 4–40 [in Russian].
- 37V. A. Marchenko, Sturm–Liouville operators and applications, revised edition, Amer. Math. Soc. , Providence, RI, 2011.
10.1090/chel/373 Google Scholar
- 38M. Marletta and R. Weikard, Weak stability for an inverse Sturm–Liouville problem with finite spectral data and complex potential, Inverse Probl. 21 (2005), 1275–1290.
- 39M. Marletta, R. Shterenberg, and R. Weikard, On the inverse resonance problem for Schrödinger operators, Commun. Math. Phys. 295 (2009), no. 2, 465–484.
10.1007/s00220-009-0928-8 Google Scholar
- 40J. R. McLaughlin, Stability theorems for two inverse spectral problems, Inverse Probl. 4 (1988), 529–540.
- 41J. R. McLaughlin, P. L. Polyakov, and P. E. Sacks, Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math. 54 (1994), 1203–1223.
- 42K. Mochizuki and I. Trooshin, On conditional stability of inverse scattering problem on a lasso-shaped graph, in: K. Lindahl, T. Lindström, L. Rodino, J. Toft, and P. Wahlberg (eds.), Analysis, Probability, Applications, and Computation, Trends in Mathematics, Birkhäuser, Cham, 2019, pp. 199–205.
- 43J. Pöschel and E. Trubowitz, Inverse spectral theory, Academic Press, New York, 1987.
- 44W. Rundell and E. Sacks, Reconstruction techniques for classical inverse Sturm–Liouville problems, Math. Comp. 58 (1992), no. 197, 161–183.
- 45T. I. Ryabushko, Stability of the reconstruction of a Sturm–Liouville operator from two spectra, Teor. Funkts. Funkts. Anal. Prilozh. 18 (1973), 176–185 [in Russian].
- 46A. M. Savchuk and A. A. Shkalikov, Inverse problems for Sturm–Liouville operators with potentials in Sobolev spaces: uniform stability, Funct. Anal. Appl. 44 (2010), no. 4, 270–285.
- 47A. M. Savchuk and A. A. Shkalikov, Recovering of a potential of the Sturm–Liouville problem from finite sets of spectral data, Spectral Theory and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, vol. 233, Amer. Math. Soc. , Providence, RI, 2014, pp. 211–224.
- 48A. M. Savchuk, Reconstruction of the potential of the Sturm–Liouville operator from a finite set of eigenvalues and normalizing constants, Math. Notes. 99 (2016), no. 5, 715–728.
- 49V. Tkachenko, Non-selfadjoint Sturm–Liouville operators with multiple spectra, Interpolation Theory, Systems Theory and Related Topics, Oper. Theory Adv. Appl., vol. 134, Birkhäuser, Basel, 2002, pp. 403–414.
- 50X.-C. Xu, Stability of direct and inverse scattering problems for the self-adjoint Schrödinger operators on the half-line, J. Math. Anal. Appl. 51 (2021), 125217.
10.1016/j.jmaa.2021.125217 Google Scholar
- 51X.-C. Xu and N. P. Bondarenko, Stability of the inverse scattering problem for the self-adjoint matrix Schrödinger operator on the half line, Stud. Appl. Math. 149 (2022), no. 3, 815–838.
- 52X.-C. Xu and N. P. Bondarenko, Local solvability and stability of the generalized Robin–Regge problem with complex coefficients, J. Inverse Ill-Posed Probl. 31 (2023), no. 5, 711–721.
10.1515/jiip-2021-0060 Google Scholar
- 53V. A. Yurko, Method of spectral mappings in the inverse problem theory, Inverse and Ill-Posed Problems Series, VNU Science, Utrecht, 2002.
10.1515/9783110940961 Google Scholar
- 54V. A. Yurko, Inverse spectral problems for differential operators on spatial networks, Russ. Math. Surv. 71 (2016), no. 3, 539–584.