Homogeneous Einstein and Einstein–Randers metrics on Stiefel manifolds
Corresponding Author
Marina Statha
Department of Mathematics, University of Thessaly, Lamia, Greece
Correspondence
Marina Statha, Department of Mathematics, University of Thessaly, GR-35100 Lamia, Greece.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Marina Statha
Department of Mathematics, University of Thessaly, Lamia, Greece
Correspondence
Marina Statha, Department of Mathematics, University of Thessaly, GR-35100 Lamia, Greece.
Email: [email protected]
Search for more papers by this authorAbstract
We study invariant Einstein metrics and Einstein–Randers metrics on the Stiefel manifold . We use a characterization for (nonflat) homogeneous Einstein–Randers metrics as pairs of (nonflat) homogeneous Einstein metrics and invariant Killing vector fields. It is well known that, for Stiefel manifolds the isotropy representation contains equivalent summands, so a complete description of invariant metrics is difficult. We prove, by assuming additional symmetries, that the Stiefel manifolds and admit at least four and six invariant Einstein metrics, respectively. Two of them are Jensen's metrics and the other two and four are new metrics. Also, we prove that admit at least two invariant Einstein metrics, which are Jensen's metrics. Finally, we show that the previous mentioned Stiefel manifolds and admit a certain number of non–Riemmanian Einstein–Randers metrics.
Open Research
DATA AVAILABILITY STATEMENT
No data were used in this research.
REFERENCES
- 1M. T. K. Abbassi and O. Kowalski, Naturality of homogeneous matrics on Stiefel manifolds, Differential Geom. Appl. 28 (2010), 131–139.
10.1016/j.difgeo.2009.05.007 Google Scholar
- 2A. Arvanitoyeorgos, Homogeneous Einstein metrics on Stiefel manifolds, Comment. Math. Univ. Carolin. 37 (1996), no. 3, 627–634.
- 3A. Arvanitoyeorgos, New invariant Einstein metrics on generalized flag manifolds, Trans. Amer. Math. Soc. 337 (1993), no. 2, 981–995.
- 4A. Arvanitoyeorgos, Progress on homogeneous Einstein manifolds and some open problems, Bull. Greek Math. Soc. 58 (2010/15), 75–97.
- 5A. Arvanitoyeorgos, V. V. Dzhepko, and Yu. G. Nikonorov, Invariant Einstein metrics on some homogeneous spaces of classical Lie groups, Canad. J. Math. 61 (2009), no. 6, 1201–1213.
- 6A. Arvanitoyeorgos, V. V. Dzhepko, and Yu. G. Nikonorov, Invariant Einstein metrics on quaternionic Stiefel manifolds, Bull. Greek Math. Soc. 53 (2007), 1–14.
- 7A. Arvanitoyeorgos, Y. Sakane, and M. Statha, New homogeneous Einstein metrics on Stiefel manifolds, Differential Geom. Appl. 35 (2014), no. S1, 2–18.
10.1016/j.difgeo.2014.01.007 Google Scholar
- 8A. Arvanitoyeorgos, Y. Sakane, and M. Statha, New homogeneous Einstein metrics on quaternionic Stiefel manifolds, Adv. Geom. 18 (2018), no. 4, 509–524.
- 9A. Arvanitoyeorgos, Y. Sakane, and M. Statha, Homogeneous Einstein metrics on complex Stiefel manifolds and special unitary groups, in: Current Developments in Differential Geometry and its Related Fields, Proceedings of the 4th International Colloquium on Differential Geometry and its Related Fields, Velico Tarnovo, Bulgaria 2014, World Scientific (2015), 1–20.
- 10A. Back and W.Y. Hsiang, Equivariant geometry and Kervaire spheres, Trans. Amer. Math. Soc. 304 (1987), no. 1, 207–227.
- 11D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, in: D. Bao, R. Bryant, S. S. Chern, Z. Shen (Eds.), A Sampler of Riemann-Finsler Geometry, Cambridge University Press, New York, 2004, pp. 197–260.
10.1017/9781009701280.006 Google Scholar
- 12A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1986.
- 13C. Böhm, Homogeneous Einstein metrics and simplicial complexes, J. Differential Geom. 67 (2004), no. 1, 79–165.
- 14C. Böhm, M. Wang, and W. Ziller, A variational approach for compact homogeneous Einstein manifolds, Geom. Func. Anal. 14 (2004), no. 4, 681–733.
- 15C. Caratheodory, Calculus of variations and partial differential equations of the first order, AMS Chelsea Publishing, Rhode Island, 1999.
- 16H. Chen, C. Chen, and Z. Chen, New invariant Einstein-Randers metrics on Stiefel manifolds , Results Math. 76 (2021), no, 1, Article 19.
10.1007/s00025-020-01333-x Google Scholar
- 17Z. Chen and Yu. G. Nikonorov, Invariant Einstein metrics on generalized Wallach spaces, Sci. China Math. 62 (2019), no. 3, 569–584.
- 18Z. Chen, S. Deng, and K. Liang, Einstein-Randers metrics on some homogeneous manifolds, Nonlinear Anal. 91 (2013), 114–120.
- 19S. Deng and Z. Hou, Homogeneous Einstein-Randers spaces of negative Ricci curvature, C. R. Acad. Sci. Paris I 347 (2009), 1169–1172.
10.1016/j.crma.2009.08.006 Google Scholar
- 20S. Deng and Z. Hou, Invariant Randers metrics on homogeneous Riemannian manifold, J. Phys. A: Math. Gen. 37 (2004), 4353–4360; Corrigendum: J. Phys. A: Math. Gen. 39 (2006), 5249–5250.
10.1088/0305-4470/37/15/004 Google Scholar
- 21S. Deng, Homogeneous Finsler spaces, Springer, New York, 2012.
10.1007/978-1-4614-4244-8 Google Scholar
- 22R. S. Ingarden, On the geometrically absolute optical representation in the electron microscope, Trav. Soc. Sci. Lett. Wrochlaw. Ser. B45 (1957), 3–60.
- 23G. Jensen, Einstein metrics on principal fiber bundles, J. Differential Geom. 8 (1973), 599–614.
10.4310/jdg/1214431962 Google Scholar
- 24M. Kerr, New examples of homogeneous Einstein metrics, Michigan Math. J. 45 (1998), 115–134.
- 25M. Kimura, Homogeneous Einstein metrics on certain Kähler -spaces, Adv. Stud. Pure Math. 18-I (1990), 303–320.
10.2969/aspm/01810303 Google Scholar
- 26S. Kobayashi, Topology of positively pinched Kähler manifolds, Tôhoku Math. J. 15 (1963), 121–139.
10.2748/tmj/1178243839 Google Scholar
- 27O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 (2000), 209–214. Erratum: Geom. Dedicata 84 (2001) 331-332.
- 28B. Najafi and A. Tayebi, On a family of Einstein Randers metrics, Int. J. Geom. Meth. Mod. Phys. 8 (2011), no. 5, 1021–1029.
10.1142/S021988781100552X Google Scholar
- 29Y. G. Nikonorov, Classification of generalized Wallach spaces, Geom. Dedicata 181 (2016), 168–172. Correction: Deom. Dedicata (2021).
- 30J-S. Park and Y. Sakane, Invariant Einstein metrics on certain homogeneous spaces, Tokyo J. Math. 20 (1997), no. 1, 51–61.
10.3836/tjm/1270042398 Google Scholar
- 31G. Randers, On an asymmetrical metric in the four-space of general relativity, Phys. Rev. 59 (1941), 195–199.
10.1103/PhysRev.59.195 Google Scholar
- 32A. Sagle, Some homogeneous Einstein manifolds, Nagoya Math. J. 39 (1970), 81–106.
- 33Z. Shen, Finsler metrics with and , Canad. J. Math. 55 (2003), 112–132.
10.4153/CJM-2003-005-6 Google Scholar
- 34M. Statha, Invariant metrics on homogeneous spaces with equivalent isotropy summands, Toyama Math. J. 38 (2016), 35–60.
- 35M. Wang, Einstein metrics from symmetry and bundle constructions, in: Surveys in Differential Geometry: Essays on Einstein Manifolds. Surv. Differ. Geom. VI, Int. Press, Boston, MA 1999.
- 36M. Wang, Einstein metrics from symmetry and bundle constructions: A sequel, in: Differential Geometry: Under the Influence of S.-S. Chern, Advanced Lectures in Math., Vol. 22, Higher Education Press/International Press, 2012, pp. 253–309.
- 37H. Wang and S. Deng, Some Einstein-Randers metrics on homogeneous spaces, Nonlinear Anal. 72 (2010), no. 12, 4407–4414.
- 38H. Wang and S. Deng, Invariant Einstein-Randers metrics on Stiefel manifolds, Nonlinear Anal. RWA 14 (2013), no. 1, 594–600.
- 39H. Wang, L. Huang, and S. Deng, Homogeneous Einstein-Randers metrics on spheres, Nonlinear Anal. 74 (2011), no. 17, 6295–6301.
- 40M. Wang and W. Ziller, Existence and non-existence of homogeneous Einstein metrics, Invent. Math. 84 (1986), 177–194.
- 41E. Zermelo, Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung, Z. Angew. Math. Mech. 11 (1931), 114–124.
10.1002/zamm.19310110205 Google Scholar