Differential norms and Rieffel algebras
Corresponding Author
Rodrigo A. H. M. Cabral
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil
Correspondence
Rodrigo A. H. M. Cabral, Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), BR-05508-090, São Paulo, SP, Brazil.
Email: [email protected]; [email protected]
Search for more papers by this authorMichael Forger
Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil
Search for more papers by this authorSeverino T. Melo
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Rodrigo A. H. M. Cabral
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil
Correspondence
Rodrigo A. H. M. Cabral, Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), BR-05508-090, São Paulo, SP, Brazil.
Email: [email protected]; [email protected]
Search for more papers by this authorMichael Forger
Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil
Search for more papers by this authorSeverino T. Melo
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil
Search for more papers by this authorAbstract
We develop criteria to guarantee uniqueness of the -norm on a -algebra . Nontrivial examples are provided by the noncommutative algebras of -valued functions and defined by M.A. Rieffel via a deformation quantization procedure, where is a -algebra and is a skew-symmetric linear transformation on with respect to which the usual pointwise product is deformed. In the process, we prove that the Fréchet -algebra topology of can be generated by a sequence of submultiplicative -norms and that, if is unital, this algebra is closed under the -functional calculus of its -completion. We also show that the algebras and are spectrally invariant in their respective -completions, when is unital. As a corollary of our results, we obtain simple proofs of certain estimates in .
REFERENCES
- 1B. A. Barnes, Symmetric Banach -algebras: invariance of spectrum, Stud. Math. 141 (2000), 251–261.
10.4064/sm-141-3-251-261 Google Scholar
- 2B. A. Barnes, Questions concerning matrix algebras and invariance of spectrum, Proc. Indian Acad. Sci. Math. Sci. 113 (2003), 71–76.
10.1007/BF02829680 Google Scholar
- 3C. J. K. Batty, Small perturbations of -dynamical systems, Commun. Math. Phys. 68 (1979), 39–43.
10.1007/BF01562540 Google Scholar
- 4S. J. Bhatt, A. Inoue, H. Ogi, Differential structures in -algebras, J. Oper. Theory 66 (2011), 301–334.
- 5B. Blackadar and J. Cuntz, Differential Banach algebra norms and smooth subalgebras of -algebras, J. Oper. Theory 26 (1991), 255–282.
- 6J.-B. Bost, Principe d'Oka, K-Théorie et Systèmes Dynamiques Non Commutatifs, Invent. Math. 101 (1990), 261–333.
10.1007/BF01231504 Google Scholar
- 7R. A. H. M. Cabral and S. T. Melo, Operators with analytic orbit for the torus action, Stud. Math. 243 (2018), 243–250.
- 8H. O. Cordes, On pseudo-differential operators and smoothness of special Lie-group representations, Manuscripta Math. 28 (1979), 51–69.
- 9H. O. Cordes, The technique of pseudodifferential operators, London Mathematical Society Lecture Note Series, vol. 202, Cambridge University Press, Cambridge, 1995.
10.1017/CBO9780511569425 Google Scholar
- 10G. A. Elliott and H. Li, Morita Equivalence of Smooth Noncommutative Tori, Acta Math. 199 (2007), 1–27.
- 11G. B. Folland, Fourier analysis and its applications, Brooks/Cole Publishing Company, Pacific Grove, California, 1992.
- 12M. Fragoulopoulou, Topological algebras with involution, Elsevier, Amsterdam, 2005.
- 13J. Horváth, Topological vector spaces and distributions, Addison-Wesley, Reading 1966.
- 14T. Hytönen, J. van Neerven, M. Veraar, and L. Weis, Analysis in Banach spaces - Volume I: martingales and Littlewood-Paley theory, A Series of Modern Surveys in Mathematics, vol. 63, Springer International Publishing AG, Cham, Switzerland, 2016.
10.1007/978-3-319-48520-1 Google Scholar
- 15J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
10.1007/978-3-662-59158-1 Google Scholar
- 16Y. Katznelson, Sur les Fonctions Opérant sur l'Algébre des Séries de Fourier Absolument Convergentes, C. R. Hebd. Seances Acad. Sci. 247 (1958), 404–406.
- 17E. Kissin and V. S. Shulman, Dense -subalgebras of Banach and -algebras and unbounded derivations of Banach and -algebras, Proc. Edinb. Math. Soc. 36 (1993), 261–276.
10.1017/S0013091500018368 Google Scholar
- 18J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Commun. Pure Appl. Math. XVIII (1965), 269–305.
10.1002/cpa.3160180121 Google Scholar
- 19E. C. Lance, Hilbert -modules—a toolkit for operator algebraists, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995.
10.1017/CBO9780511526206 Google Scholar
- 20S. Lang, Fundamentals of differential geometry, Springer-Verlag, New York, 1999.
10.1007/978-1-4612-0541-8 Google Scholar
- 21R. Longo, Automatic relative boundedness of derivations in -algebras, J. Funct. Anal. 34 (1979), 21–28.
10.1016/0022-1236(79)90022-3 Google Scholar
- 22B. D. MacCluer, Elementary functional analysis, Graduate Texts in Mathematics, vol. 253, Springer Science+Business Media, New York, 2009.
10.1007/978-0-387-85529-5 Google Scholar
- 23S. T. Melo and M. I. Merklen, Pseudodifferential operators with -algebra-valued symbols: abstract characterizations, Proc. Amer. Math. Soc. 136 (2008), 219–227.
10.1090/S0002-9939-07-09006-5 Google Scholar
- 24M. I. Merklen, Resultados Motivados por uma Caracterização de Operadores Pseudo-Diferenciais Conjecturada por Rieffel, PhD Thesis, Instituto de Matemática e Estatística, University of São Paulo, 2002.
- 25M. I. Merklen, Boundedness of pseudodifferential operators of a -algebra-valued symbol, Proc. R. Soc. Edinb. 135A (2005), 1279–1286.
10.1017/S0308210500004376 Google Scholar
- 26E. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), 1–82.
- 27G. J. Murphy, -algebras and operator theory, Academic Press, San Diego, 1990.
- 28R. Remmert, Theory of complex functions, Graduate Texts in Mathematics, vol. 122, Springer-Verlag, New York, 1991.
10.1007/978-1-4612-0939-3 Google Scholar
- 29M. A. Rieffel, Deformation quantization for actions of , Mem. Amer. Math. Soc. 106 (1993), 1–93.
- 30W. Rudin, A strong converse of the Wiener-Levy theorem, Can. J. Math. 14 (1962), 694–701.
10.4153/CJM-1962-059-3 Google Scholar
- 31W. Rudin, Real and complex analysis, McGraw-Hill, London, 1970.
- 32W. Rudin, Functional analysis, McGraw-Hill, New York, 1991.
- 33K. Schmüdgen, An invitation to unbounded representations of -algebras on Hilbert space, Graduate Texts in Mathematics, vol. 285, Springer, Cham, Switzerland, 2020.
10.1007/978-3-030-46366-3 Google Scholar
- 34L. B. Schweitzer, A short proof that is local if is local and Fréchet, Int. J. Math. 3 (1992), 581–589.
10.1142/S0129167X92000266 Google Scholar
- 35J. Seiler, Continuity of edge and corner pseudodifferential operators, Math. Nachr. 205 (1999), 163–182.
- 36L. Waelbroeck, Topological vector spaces and algebras, Lecture Notes in Mathematics, vol. 230, Springer-Verlag, Berlin-Heidelberg-New York, 1971.