Real-time automated segmentation of breast lesions using CNN-based deep learning paradigm: Investigation on mammogram and ultrasound
Kushangi Atrey
Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, India
Search for more papers by this authorCorresponding Author
Bikesh Kumar Singh
Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, India
Correspondence
Bikesh Kumar Singh, Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
Email: [email protected]
Search for more papers by this authorAbhijit Roy
Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, India
Search for more papers by this authorNarendra Kuber Bodhey
Department of Radiodiagnosis, All India Institute of Medical Sciences Raipur, Raipur, India
Search for more papers by this authorKushangi Atrey
Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, India
Search for more papers by this authorCorresponding Author
Bikesh Kumar Singh
Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, India
Correspondence
Bikesh Kumar Singh, Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
Email: [email protected]
Search for more papers by this authorAbhijit Roy
Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, India
Search for more papers by this authorNarendra Kuber Bodhey
Department of Radiodiagnosis, All India Institute of Medical Sciences Raipur, Raipur, India
Search for more papers by this authorAbstract
The existing studies involving single imaging modalities (i.e., mammogram (MG) or ultrasound (US)) to detect breast lesions have demonstrated limited clinical application because radiologists rarely interpret an MG without a corresponding US and vice-versa. Thus, this article aims to develop a Computer Aided Segmentation (CAS) system for detecting breast lesions in both MG and US. A customized convolutional neural network (CNN) is adopted for this purpose. A new real-time bi-modal database of MG and US is used for dual-modality evaluation. Twelve performance measures, five shape measurements, area under receiver operating characteristics (ROC), and paired T-test are used to assess the performance of proposed CAS system. A Dice Similarity Coefficient (DSC) of 0.64 (for MG) and 0.77 (for US) and Jaccard Index (JI) of 0.53 (for MG) and 0.64 (for US) indicate that the US can be used as an adjunct technique to MG in the segmenting breast lesions.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data is not available with this manuscript but can be made available on reasonable request after permission of IEC.
REFERENCES
- 1Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 2015; 63(7): 1455-1462. doi:10.1109/TBME.2015.2496264
- 2 Breast cancer Statistics & Facts | Statista. [Online]. Available: https://www.statista.com/topics/4337/breast-cancer-in-the-us/. Accessed June 25, 2020.
- 3 Globocan 2018: India Factsheet. Available: http://cancerindia.org.in/globocan-2018-india-factsheet/. Accessed December 10, 2020.
- 4Menezes GL, Knuttel FM, Stehouwer BL, Pijnappel RM, van den Bosch MA. Magnetic resonance imaging in breast cancer: a literature review and future perspectives. World J Clin Oncol. 2014; 5(2): 61. doi:10.5306/wjco.v5.i2.61
- 5Cheng HD, Shan J, Ju W, Guo Y, Zhang L. Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 2010; 43(1): 299-317. doi:10.1016/j.patcog.2009.05.012
- 6Yuan Y, Giger ML, Li H, Bhooshan N, Sennett CA. Multimodality computer-aided breast cancer diagnosis with FFDM and DCE-MRI. Acad. Radiol. 2010; 17(9): 1158-1167. doi:10.1016/j.acra.2010.04.015
- 7Rouhi R, Jafari M, Kasaei S, Keshavarzian P. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst. Appl. 2015; 42(3): 990-1002. doi:10.1016/j.eswa.2014.09.020
- 8Sridhar B, Reddy KVVS, Prasad AM. Mammographic image analysis based on adaptive morphological fuzzy logic CAD system. Int. J. Biomed. Eng. Technol. 2015; 17(4): 341-355. doi:10.1504/IJBET.2015.069399
- 9Dhungel N, Carneiro G, Bradley AP. Deep learning and structured prediction for the segmentation of mass in mammograms. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2015: 605-612. doi:10.1007/978-3-319-24553-9_74
10.1007/978?3?319?24553?9_74 Google Scholar
- 10Singh BK, Jain P, Banchhor SK, Verma K. Performance evaluation of breast lesion detection systems with expert delineations: a comparative investigation on mammographic images. Multimed. Tools Appl. 2019; 78(16): 22421-22444. doi:10.1007/s11042-019-7570-z
- 11Patel BC, Sinha GR, Soni D. Detection of masses in mammographic breast cancer images using modified histogram based adaptive thresholding (MHAT) method. Int. J. Biomed. Eng. Technol. 2019; 29(2): 134-154. doi:10.1504/IJBET.2019.097302
- 12Shrivastava N, Bharti J. Breast tumor detection in digital mammogram based on efficient seed region growing segmentation. IETE J. Res. 2020; 1-13. doi:10.1080/03772063.2019.1710583
- 13Sha Z, Hu L, Rouyendegh BD. Deep learning and optimization algorithms for automatic breast cancer detection. Int. J. Imaging Syst. Technol. 2020; 30(2): 495-506. doi:10.1002/ima.22400
- 14Melekoodappattu JG, Subbian PS, Queen MF. Detection and classification of breast cancer from digital mammograms using hybrid extreme learning machine classifier. Int. J. Imaging Syst. Technol. 2021; 31(2): 909-920. doi:10.1002/ima.22484
- 15Huang Q, Yang F, Liu L, Li X. Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Inf. Sci. 2015; 314: 293-310. doi:10.1016/j.ins.2014.08.021
- 16Triyani Y, Nugroho HA, Rahmawaty M, Ardiyanto I, Choridah L. Performance analysis of image segmentation for breast ultrasound images. 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE; 2016: 1-6. doi:10.1109/ICITEED.2016.7863298
10.1109/ICITEED.2016.7863298 Google Scholar
- 17Gu P, Lee WM, Roubidoux MA, Yuan J, Wang X, Carson PL. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. Ultrasonics. 2016; 65: 51-58. doi:10.1016/j.ultras.2015.10.023
- 18Yap MH, Pons G, Martí J, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 2017; 22(4): 1218-1226. doi:10.1109/JBHI.2017.2731873
- 19Kumar V, Webb JM, Gregory A, et al. Automated and real-time segmentation of suspicious breast masses using convolutional neural network. PLoS ONE. 2018; 13(5):e0195816. doi:10.1371/journal.pone.0195816
- 20Liu L, Li K, Qin W, et al. Automated breast tumor detection and segmentation with a novel computational framework of whole ultrasound images. Med. Biol. Eng. Comput. 2018; 56(2): 183-199. doi:10.1007/s11517-017-1770-3
- 21Xie X, Shi F, Niu J, Tang X. Breast ultrasound image classification and segmentation using convolutional neural networks. Pacific rim conference on multimedia. Springer; 2018: 200-211. doi:10.1007/978-3-030-00764-5_19
10.1007/978?3?030?00764?5_19 Google Scholar
- 22Xu Y, Wang Y, Yuan J, Cheng Q, Wang X, Carson PL. Medical breast ultrasound image segmentation by machine learning. Ultrasonics. 2019; 91: 1-9. doi:10.1016/j.ultras.2018.07.006
- 23Panigrahi L, Verma K, Singh BK. Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution. Expert Syst. Appl. 2019; 115: 486-498. doi:10.1016/j.eswa.2018.08.013
- 24Huang Q, Huang Y, Luo Y, Yuan F, Li X. Segmentation of breast ultrasound image with semantic classification of superpixels. Med. Image Anal. 2020; 61:101657. doi:10.1016/j.media.2020.101657
- 25Tong Y, Liu Y, Zhao M, Meng L, Zhang J. Improved U-net MALF model for lesion segmentation in breast ultrasound images. Biomed Signal Process Control. 2021; 68:102721. doi:10.1016/j.bspc.2021.102721
- 26Yi A, Jang MJ, Yim D, Kwon BR, Shin SU, Chang JM. Addition of screening breast US to digital mammography and digital breast Tomosynthesis for breast cancer screening in women at average risk. Radiology. 2021; 298(3): 568-575. doi:10.1148/radiol.2021203134
- 27Heath M, Bowyer K, Kopans D, et al. Current status of the digital database for screening mammography. Digital mammography. Springer; 1998: 457-460.
10.1007/978-94-011-5318-8_75 Google Scholar
- 28Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer WP. The digital database for screening mammography. Proceedings of the Fifth International Workshop on Digital Mammography. Medical Physics Publishing; 2001: 212-218.
- 29Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief. 2020; 28:104863. doi:10.1016/j.dib.2019.104863
- 30 Online dataset: http://www.onlinemedicalimages.com/index.php/en/site-map. Accessed March 10, 2020
- 31Rodrigues PS. Breast Ultrasound Image. Mendeley Data. 2017. doi:10.17632/wmy84gzngw.1
10.17632/wmy84gzngw.1 Google Scholar
- 32Rosebrock A. Deep learning for computer vision with python: starter bundle. 1 st ed. PyImageSearch; 2017: 21–30.
- 33O'Shea K, Nash R. An introduction to convolutional neural networks, 2015. arXiv preprint arXiv:1511.08458
- 34 Convolutional Neural Networks. [Online] Available: https://cs231n.github.io/convolutional-networks/ Accessed October 20, 2020.
- 35Taha AA, Hanbury A. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 2015; 37(11): 2153-2163. doi:10.1109/TPAMI.2015.2408351
- 36Wang Z, Wang E, Zhu Y. Image segmentation evaluation: a survey of methods. Artif. Intell. Rev. 2020; 53(8): 5637-5674. doi:10.1007/s10462-020-09830-9
- 37Madjar H. Role of breast ultrasound for the detection and differentiation of breast lesions. Breast Care. 2010; 5(2): 109-114. doi:10.1159/000297775
- 38Bowles D, Quinton A. The use of ultrasound in breast cancer screening of asymptomatic women with dense breast tissue: a narrative review. J Med Imaging Radiat Sci. 2016; 47(3): S21-S28. doi:10.1016/j.jmir.2016.06.005
- 39Pan HB. The role of breast ultrasound in early cancer detection. J Med Ultrasound. 2016; 24(4): 138-141. doi:10.1016/j.jmu.2016.10.001
- 40Al-Antari MA, Han SM, Kim TS. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Comput. Methods Prog. Biomed. 2020; 196:105584. doi:10.1016/j.cmpb.2020.105584
- 41Fang H, Fan H, Lin S, Qing Z, Sheykhahmad FR. Automatic breast cancer detection based on optimized neural network using whale optimization algorithm. Int. J. Imaging Syst. Technol. 2021; 31(1): 425-438. doi:10.1002/ima.22468
- 42Masud M, Rashed AEE, Hossain MS. Convolutional neural network-based models for diagnosis of breast cancer. Neural Comput. & Applic. 2020; 1–12. doi:10.1007/s00521-020-05394-5.
- 43Shivhare E, Saxena V. Breast cancer diagnosis from mammographic images using optimized feature selection and neural network architecture. Int. J. Imaging Syst. Technol. 2021; 31(1): 253-269. doi:10.1002/ima.22467