Role of perovskites as a bi-functional catalyst for electrochemical water splitting: A review
Ramsha Khan
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
Search for more papers by this authorCorresponding Author
Muhammad T. Mehran
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
Correspondence
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan.
Email: [email protected]
Search for more papers by this authorSalman R. Naqvi
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
Search for more papers by this authorAsif H. Khoja
Fossil Fuel Laboratory, Department of Thermal Energy Engineering, U.S.-Pakistan Centre for Advanced Studies in Energy (USPCASE), National University of Sciences & Technology (NUST), Islamabad, Pakistan
Search for more papers by this authorKhalid Mahmood
Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore, Faisalabad, Pakistan
Search for more papers by this authorFaisal Shahzad
Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
Search for more papers by this authorSajjad Hussain
Graphene Research Institute, Sejong University, Seoul, Republic of Korea
Search for more papers by this authorRamsha Khan
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
Search for more papers by this authorCorresponding Author
Muhammad T. Mehran
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
Correspondence
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan.
Email: [email protected]
Search for more papers by this authorSalman R. Naqvi
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
Search for more papers by this authorAsif H. Khoja
Fossil Fuel Laboratory, Department of Thermal Energy Engineering, U.S.-Pakistan Centre for Advanced Studies in Energy (USPCASE), National University of Sciences & Technology (NUST), Islamabad, Pakistan
Search for more papers by this authorKhalid Mahmood
Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore, Faisalabad, Pakistan
Search for more papers by this authorFaisal Shahzad
Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
Search for more papers by this authorSajjad Hussain
Graphene Research Institute, Sejong University, Seoul, Republic of Korea
Search for more papers by this authorFunding information: Higher Education Commission, Pakistan, Grant/Award Numbers: Startup grant SRGP #21-2178, SRGP #21-2178
Summary
The electrochemical water splitting by using renewable electricity is being considered as a sustainable, clean and considerable source of hydrogen fuel for future transportation and energy applications. The sluggish kinetics at anode and cathode, thus, require plenty of research work on the development of an efficient and stable electrocatalyst, which would provide the enhanced activity of water splitting reaction as well as stability for long-term operation. This review draws a detailed sketch of the progress in the pursuit of replacing noble metals with non-precious perovskite-based substitutes without compromising the key electrocatalyst characteristics. Herein, we critically analysed the latest research work and progress of perovskite oxides for anodic/oxygen reduction reaction/cathodic, including the mechanism behind perovskite oxide catalytic reactions, controlled composition as well as the role of various design strategies to achieve high catalytic performance. Moreover, the article also provides an insight to the associated density functional theory that can provide profound understanding of mechanism, involved behind these reactions and, the need for computational studies to exploit the active area of catalysts. It is believed that this article will assist researchers to explore key area of research in the current generation perovskites that show enhanced catalytic performance as well as to work on unforeseen challenges.
REFERENCES
- 1Wang X, Ge L, Zhu Y, Dai J, Zhou W. Silver-Perovskite hybrid Electrocatalysts for oxygen reduction reaction in alkaline media silver-Perovskite hybrid Electrocatalysts for oxygen reduction reaction in alkaline media. J Electrochem Soc. 2018; 165: 524-529. https://doi.org/10.1149/2.1131809jes.
- 2Wang T, Zhang X, Zhu X, et al. Hierarchical CuO@ZnCo LDH Heterostructured nanowire arrays toward enhanced water oxidation Electrocatalysis. Nanoscale. 2020; 12(9): 5359-5362. https://doi.org/10.1039/D0NR00752H.
- 3Lee T, Jeon EK, Kim B-S. Mussel-inspired nitrogen-doped Graphene Nanosheet supported manganese oxide nanowires as highly efficient Electrocatalysts for oxygen reduction reaction. J Mater Chem A. 2014; 2(17): 6167-6173.
- 4Turner JA. Sustainable Hydrogen Production. Science. 2004; 305(5686): 972-974.
- 5Dai J, Zhu Y, Zhong Y, et al. Enabling high and stable electrocatalytic activity of iron-based Perovskite oxides for water splitting by combined bulk doping and morphology designing. Adv Mater Interfaces. 2018; 6(1): 13-17. https://doi.org/10.1002/admi.201801317.
- 6Kim SKS-KS-K, Mehran MTMT, Mushtaq U, et al. Effect of reverse Boudouard reaction catalyst on the performance of solid oxide carbon fuel cells integrated with a dry Gasifier. Energy Convers Manag. 2016; 130: 119-129. https://doi.org/10.1016/j.enconman.2016.10.047.
- 7Lee D-Y, Mehran MT, Kim J, et al. Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide Coelectrolysis cell unit-bundle. Appl Energy. 2020; 257: 114036.
- 8Yu S-B, Lee S-H, Mehran MT, et al. Syngas production in high performing tubular solid oxide cells by using high-temperature H<inf>2</Inf>O/CO<inf>2</Inf>co-electrolysis. Chem. Eng. J. 2018; 335(1): 41-51. https://doi.org/10.1016/j.cej.2017.10.110.
- 9Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015; 44(15): 5148-5180.
- 10Da Y, Zeng L, Wang C, Gong C, Cui L. Electrochimica Acta a simple approach to tailor OER activity of Sr x Co 0 . 8 Fe 0 . 2 O 3 Perovskite catalysts. Electrochim Acta. 2019; 300: 85-92. https://doi.org/10.1016/j.electacta.2019.01.052.
- 11Zhu Y, Zhou W, Zhong Y, et al. A Perovskite Nanorod as Bifunctional Electrocatalyst for overall water splitting. Adv. Energy Mater. 2017; 7(8): 1602122.
- 12Zeng K, Zhang D. Recent Progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci. 2010; 36(3): 307-326.
- 13Bidault F, Brett DJL, Middleton PH, Brandon NP. Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources. 2009; 187(1): 39-48.
- 14Slanac DA, Hardin WG, Johnston KP, Stevenson KJ. Atomic ensemble and electronic effects in Ag-rich AgPd Nanoalloy catalysts for oxygen reduction in alkaline media. J Am Chem Soc. 2012; 134(23): 9812-9819.
- 15Jiang L, Hsu A, Chu D, Chen R. Oxygen reduction on carbon supported Pt and PtRu catalysts in alkaline Solutions. J Electroanal Chem. 2009; 629(1–2): 87-93.
- 16Zhu W, Zhang R, Qu F, Asiri AM, Sun X. Design and application of foams for Electrocatalysis. ChemCatChem. 2017; 9(10): 1721-1743. https://doi.org/10.1002/cctc.201601607.
- 17Gorlin Y, Jaramillo TF. A Bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc. 2010; 132(39): 13612-13614.
- 18Wang W, Yang L, Qu F, et al. A self-supported NiMoS4 Nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. J Mater Chem A. 2017; 5(32): 16585-16589. https://doi.org/10.1039/C7TA05521H.
- 19Liu T, Liu D, Qu F, et al. Enhanced Electrocatalysis for energy-efficient hydrogen production over CoP catalyst with Nonelectroactive Zn as a promoter. Adv Energy Mater. 2017; 7(15): 1700020. https://doi.org/10.1002/aenm.201700020.
- 20Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res. 2013; 46(8): 1878-1889.
- 21Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen K. 3D nitrogen-doped Graphene aerogel-supported Fe3O4 nanoparticles as efficient Electrocatalysts for the oxygen reduction reaction. J Am Chem Soc. 2012; 134(22): 9082-9085.
- 22Parvez K, Yang S, Hernandez Y, et al. Nitrogen-doped Graphene and its iron-based composite as efficient Electrocatalysts for oxygen reduction reaction. ACS Nano. 2012; 6(11): 9541-9550.
- 23Wu G, More KL, Xu P, et al. A carbon-nanotube-supported Graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chem Commun. 2013; 49(32): 3291-3293.
- 24Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science. 2009; 323(5915): 760-764.
- 25Qu L, Liu Y, Baek JB, Dai L. Nitrogen-doped Graphene as efficient Metal-free Electrocatalysts for Oxygen Reduction in Fuel Cells. ACS Nano. 2010; 4(3): 1321-1326.
- 26Bockris JOM, Otagawa T. Mechanism of oxygen evolution on Perovskites. J Phys Chem. 1983; 79(32): 2960-2971. https://doi.org/10.1021/j100238a048.
- 27Bockris JO, Otagawa T. The Electrocatalysis of oxygen evolution on Perovskites. J Electrochem Soc. 1984; 131(2): 290-302.
- 28Haider MA, Capizzi AJ, Murayama M, McIntosh S. Reverse micelle synthesis of Perovskite oxide nanoparticles. Solid State Ion. 2011; 196(1): 65-72.
- 29Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J Electrochem Soc. 2010; 157(8): B1263-B1268.
- 30Zongping S, Zhou W, Zhonghua Z. Advanced synthesis of materials for intermediate temperature solid oxide fuel cell. Prog Mater Sci. 2012; 57: 804-874.
- 31She SX, Yu J, Tang WQ, et al. Ocatalysts in alkaline media a systematic study of oxygen evolution activity and stability on La 1-x Sr x FeO 3-δ perovskite electrocatalysts in alkaline: A systematic study of oxygen evolution activity and stability on La1-XSrxFeO3- # Perovskite Electr med. Appl Mater Interfaces. 2018; 10: 11715-11721. https://doi.org/10.1021/acsami.8b00682.
- 32Zhu, Y.; Sunarso, J.; Zhou, W.; Shao, Z. New Phosphorus-Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry. 2018. https://doi.org/10.1002/chem.201705675.
- 33Xu X, Chen Y, Zhou W, Zhong Y, Guan D, Shao Z. Earth-abundant silicon for facilitating water oxidation over iron-based Perovskite Electrocatalyst. Adv Mater Interfaces. 2018; 1701693: 1-7. https://doi.org/10.1002/admi.201701693.
- 34Thanh TD, Chuong ND, Balamurugan J, Van Hien H, Kim NH, Lee JH. Porous hollow-structured LaNiO3 stabilized N, S-Codoped Graphene as an active Electrocatalyst for oxygen reduction reaction. Small. 2017; 13(39): 1701884.
- 35Wang W, Ren X, Hao S, et al. Self-templating construction of hollow amorphous CoMoS4 nanotube array towards efficient hydrogen evolution electrocatalysis at neutral PH. Chemistry. 2017; 23(52): 12718-12723. https://doi.org/10.1002/chem.201702923.
- 36Ding R, Chen Q, Luo Q, et al. Salt template-assisted in situ construction of Ru Nanoclusters and porous carbon: excellent catalysts toward hydrogen evolution, ammonia-Borane hydrolysis, and 4-Nitrophenol reduction. Green Chem. 2020; 22(3): 835-842. https://doi.org/10.1039/C9GC03986D.
- 37Case AA, Sr B, Fe C. Electrochimica Acta toward enhanced oxygen evolution on Perovskite oxides synthesized. Electrochim Acta. 2016; 219: 553-559.
- 38Zhu Y, Tahini HA, Hu Z, et al. Unusual synergistic effect in layered Ruddlesden − popper oxide enables ultrafast hydrogen evolution. Nat Commun. 2019; 10: 1-9.
- 39Batteries RZ. A Highly Efficient and Robust Cation Ordered. ACS Nano. 2017; 11: 11594-11601. https://doi.org/10.1021/acsnano.7b06595.
- 40Li B-Q, Xia Z-J, Zhang B, Tang C, Wang H-F, Zhang Q. Regulating P-block metals in Perovskite Nanodots for efficient Electrocatalytic water oxidation. Nat Commun. 2017; 8(1): 934.
- 41Kim J, Chen X, Shih P-C, Yang H. Porous perovskite-type lanthanum cobaltite as electrocatalysts toward oxygen evolution reaction. ACS Sustain Chem Eng. 2017; 5(11): 10910-10917.
- 42Duan Y, Sun S, Xi S, et al. Tailoring the Co 3d - O 2p Covalency in LaCoO 3 by Fe substitution to promote oxygen evolution reaction. Chem Mater. 2017; 29: 10534-10541. https://doi.org/10.1021/acs.chemmater.7b04534.
- 43Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2012; 2(9): 1916-1923. https://doi.org/10.1021/cs300451q.
- 44Jin C, Yang R. Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a Bifunctional catalyst for the oxygen reduction and evolution reaction. J. Mater. Chem. A. 2014; 1(39): 12170-12177. https://doi.org/10.1039/C3TA12118F.
- 45Jin C, Cao X, Zhang L, Zhang C, Yang R. Preparation and electrochemical properties of urchin-like La 0 . 8 Sr 0 . 2 MnO 3 Perovskite oxide as a Bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J Power Sources. 2013; 241: 225-230. https://doi.org/10.1016/j.jpowsour.2013.04.116.
- 46Wang H, Liang Y, Li Y, Dai H. Co1-XS-Graphene hybrid: a high-performance metal Chalcogenide Electrocatalyst for oxygen reduction. Angew Chemie. 2011; 50(46): 10969-10972. https://doi.org/10.1002/anie.201104004.
- 47Higgins DC, Hassan FM, Seo MH, et al. Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped Graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. J Mater Chem A. 2015; 3(12): 6340-6350.
- 48Zhao C, Li D, Feng Y. Size-controlled hydrothermal synthesis and high Electrocatalytic performance of CoS 2 Nanocatalysts as non-precious metal cathode materials for fuel cells. J Mater Chem A. 2013; 1(18): 5741-5746.
- 49Isogai S, Ohnishi R, Katayama M, et al. Composite of TiN nanoparticles and few-walled carbon nanotubes and its application to the Electrocatalytic oxygen reduction reaction. Chem Asian J. 2012; 7(2): 286-289. https://doi.org/10.1002/asia.201100715.
- 50Tian X, Luo J, Nan H, Fu Z, Zeng J, Liao S. Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. J Mater Chem A. 2015; 3(32): 16801-16809.
- 51Youn DH, Bae G, Han S, et al. A highly efficient transition metal nitride-based Electrocatalyst for oxygen reduction reaction: TiN on a CNT–Graphene hybrid support. J Mater Chem A. 2013; 1(27): 8007-8015.
- 52Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X. Recent Progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater. 2016; 28(2): 215-230. https://doi.org/10.1002/adma.201502696.
- 53Xiong C, Wei Z, Hu B, et al. Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction. J Power Sources. 2012; 215: 216-220.
- 54Mahmood K, Khalid A, Ahmad SW, Mehran MT. Indium-doped ZnO Mesoporous Nanofibers as efficient electron transporting materials for Perovskite solar cells. Surf Coatings Technol. 2018; 352: 231-237.
- 55Mehran MT, Khan MZ, Lee SB, Lim TH, Park S, Song RH. Improving sulfur tolerance of Ni-YSZ anodes of solid oxide fuel cells by optimization of microstructure and operating conditions. Int J Hydrogen Energy. 2018; 43(24): 11202-11213. https://doi.org/10.1016/j.ijhydene.2018.04.200.
- 56Tanaka H, Misono M. Advances in designing Perovskite catalysts. Curr Opin Solid State Mater Sci. 2001; 5(5): 381-387. https://doi.org/10.1016/S1359-0286(01)00035-3.
- 57Xu J, Chen C, Han Z, Yang Y, Li J, Deng Q. Recent advances in oxygen Electrocatalysts based on Perovskite oxides. Nanomaterials. 2019; 9(8). https://doi.org/10.3390/nano9081161.
- 58Hardin WG, Mefford JT, Slanac DA, et al. Tuning the Electrocatalytic activity of Perovskites through active site variation and support interactions. Chem Mater. 2014; 26(11): 3368-3376.
- 59Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ. Highly active, nonprecious metal Perovskite Electrocatalysts for Bifunctional metal–air battery electrodes. J. Phys. Chem. Lett. 2013; 4(8): 1254-1259.
- 60Mefford JT, Hardin WG, Dai S, Johnston KP, Stevenson KJ. Anion charge storage through oxygen intercalation in LaMnO 3 Perovskite Pseudocapacitor electrodes. Nat Mater. 2014; 13(7): 726.
- 61Risch M, Stoerzinger KA, Maruyama S, Hong WT, Takeuchi I, Shao-Horn Y. La0. 8Sr0. 2MnO3− δ decorated with Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ: a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. J Am Chem Soc. 2014; 136(14): 5229-5232.
- 62Zhu H, Zhang P, Dai S. Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 2015; 5(11): 6370-6385.
- 63Stoerzinger KA, Risch M, Suntivich J, et al. Oxygen Electrocatalysis on (001)-oriented manganese Perovskite films: Mn Valency and charge transfer at the Nanoscale. Energ Environ Sci. 2013; 6(5): 1582-1588.
- 64Miao J, Duan X, Li J, et al. Boosting performance of lanthanide magnetism Perovskite for advanced oxidation through lattice doping with catalytically inert element. Chem Eng J. 2019; 355(5): 721-730. https://doi.org/10.1016/j.cej.2018.08.192.
- 65Mao L, Ke W, Pedesseau L, et al. Hybrid Dion–Jacobson 2D Lead iodide Perovskites. J Am Chem Soc. 2018; 140(10): 3775-3783. https://doi.org/10.1021/jacs.8b00542.
- 66Ramakrishnan P, Im H, Baek SH, Sohn JI. Recent studies on Bifunctional Perovskite Electrocatalysts in oxygen evolution, oxygen reduction, and hydrogen evolution reactions under alkaline electrolyte. Isr J Chem. 2019; 59(8): 708-719. https://doi.org/10.1002/ijch.201900040.
- 67Sun H, Xu X, Hu Z. Boosting oxygen evolution reaction activity of perovskite through introducing multi-elements synergy and building ordered structure. J. Mater. Chem. A. 2019; 7(16): 9924-9932. https://doi.org/10.1039/C9TA01404G.
- 68Kim N, Sa YJ, Yoo TS, et al. Oxygen-deficient triple Perovskites as highly active and durable Bifunctional Electrocatalysts for oxygen electrode reactions. Sci Adv. 2018; 4(6). https://doi.org/10.1126/sciadv.aap9360.
- 69Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem Rev. 2015; 115(18): 9869-9921. https://doi.org/10.1021/acs.chemrev.5b00073.
- 70Gupta S, Kellogg W, Xu H, Liu X, Cho J, Wu G. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media. Chem. Asian J. 2016; 11(1): 10-21. https://doi.org/10.1002/asia.201500640.
- 71Wang H, Zhou M, Choudhury P, Luo H. Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions—a mini review. Appl Mater Today. 2019; 16: 56-71. https://doi.org/10.1016/j.apmt.2019.05.004.
- 72Lasia A. Hydrogen evolution reaction. W Vielstich A Lamm H A. Gasteiger Handbook of fuel cells. 6. Jhon Wiley & Sons; 2010.
- 73HORIUTI J, MATSUDA A, ENYO M, KITA H. The mechanism of the hydrogen evolution reaction. In: JA Friend, FBT-E Gutmann, eds. Electrochemistry. Headington Hill Hall, Oxford: Pergamon; 1965: 750-779.
10.1016/B978-1-4831-9831-6.50063-1 Google Scholar
- 74Huq AKMS. Platinum silver and tungsten surfaces in acid solutions T. J Phys Chem. 1957; 61(6): 879-886. https://doi.org/10.1021/j150553a008.
- 75Xu X, Chen Y, Zhou W, Zhu Z, Su C, Liu M. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016; 28: 6442-6448. https://doi.org/10.1002/adma.201600005.
- 76Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide Nanomaterials. ACS Catal. 2014; 4(11): 3957-3971. https://doi.org/10.1021/cs500923c.
- 77Parsons R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc. 1958; 54(0): 1053-1063. https://doi.org/10.1039/TF9585401053.
- 78Arul, N. S. Revolution of Perovskite. Materials Horizons: from Nature to Nanomaterials Revolution of Perovskite Gateway East, Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-15-1267-4.
- 79Trasatti S. Electrocatalysis by oxides—attempt at a unifying approach. J Electroanal Chem Interfacial Electrochem. 1980; 111(1): 125-131.
- 80Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta. 1984; 29(11): 1503-1512.
- 81Bockris JOM, Otagawa T, Young V. Solid state surface studies of the Electrocatalysis of oxygen evolution on Perovskites. J Electroanal Chem. 1983; 150(1–2): 633-643.
- 82Man IC, Su H-Y, Calle-Vallejo F, et al. Universality in oxygen evolution Electrocatalysis on oxide surfaces. ChemCatChem. 2011; 3(7): 1159-1165. https://doi.org/10.1002/cctc.201000397.
- 83Goodenough JB, Manoharan R, Paranthaman M. Surface protonation and electrochemical activity of oxides in aqueous solution. J Am Chem Soc. 1990; 112(6): 2076-2082. https://doi.org/10.1021/ja00162a006.
- 84Rossmeisl J, Logadottir A, Nørskov JK. Electrolysis of water on (oxidized) metal surfaces. Chem Phys. 2005; 319(1): 178-184. https://doi.org/10.1016/j.chemphys.2005.05.038.
- 85Kuznetsov DA, Han B, Yu Y, et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen Electrocatalysis. Joule. 2018; 2(2): 225-244. https://doi.org/10.1016/j.joule.2017.11.014.
- 86Diaz-Morales O, Calle-Vallejo F, de Munck C, Koper MTM. Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chem Sci. 2013; 4(6): 2334-2343.
- 87Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air Batteries. Nat Chem. 2011; 3(7): 546.
- 88Suntivich J. A perovskite oxide optimized for. Science. 2011; 2012: 334. https://doi.org/10.1126/science.1212858.
- 89Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science. 2011; 334(6061): 1383-1385.
- 90Yoo JS, Rong X, Liu Y, Kolpak AM. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on Perovskites. ACS Catal. 2018; 8: 4628-4636. https://doi.org/10.1021/acscatal.8b00612.
- 91Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004; 108(46): 17886-17892. https://doi.org/10.1021/jp047349j.
- 92Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK. Electrolysis of water on oxide surfaces. J Electroanal Chem. 2007; 607(1–2): 83-89. https://doi.org/10.1016/j.jelechem.2006.11.008.
- 93Jin C, Cao X, Lu F, Yang Z, Yang R. Perovskite as bifunctional catalyst in alkaline media. Int J Hydrogen Energy. 2013; 38(25): 10389-10393. https://doi.org/10.1016/j.ijhydene.2013.06.047.
- 94Zhu Y, Dai J, Zhou W, Zhong Y, Wang H, Shao Z. Synergistically enhanced hydrogen evolution electrocatalysis by in situ exsolution of metallic nanoparticles on perovskites. J Mater Chem A. 2018; 6(28): 13582-13587. https://doi.org/10.1039/c8ta02347f.
- 95Mefford JT, Rong X, Abakumov AM, et al. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat Commun. 2016; 7: 11053. https://doi.org/10.1038/ncomms11053.
- 96Rong X, Parolin J, Kolpak AM. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 2016; 6(2): 1153-1158. https://doi.org/10.1021/acscatal.5b02432.
- 97Tiwari SK, Chartier P, Singh RN. Preparation of Perovskite-type oxides of cobalt by the malic acid aided process and their Electrocatalytic surface properties in relation to oxygen evolution. J Electrochem Soc. 1995; 142(1): 148-153.
- 98Silva MI. PtRu / C-LaNiO 3 composite electrodes for Electrocatalysis. J Electrochem Soc. 2013; 160(10): 1138-1142. https://doi.org/10.1149/2.078310jes.
- 99Tiwari SK, Singh SP, Singh RN. Effects of Ni, Fe, Cu, and Cr substitutions for Co in La08Sr02CoO3 on Electrocatalytic properties for oxygen evolution. J Electrochem Soc. 1996; 143(5): 1505-1510.
- 100Chang Y, Chang Y, Wu P, Wu C, Lin P. For oxygen reduction reaction in an alkaline electrolyte ( a ) ( b ) JCPDS-36-1389. J Electrochem Soc. 2010; 157: 900-905. https://doi.org/10.1149/1.3384665.
- 101Xue Y, Miao H, Sun S, Wang Q, Li S, Liu Z. Activity for oxygen reduction reaction in Aluminium. RSC Adv. 2017; 7: 5214-5221. https://doi.org/10.1039/C6RA25242G.
- 102Chen C, King G, Dickerson RM, et al. Oxygen-deficient BaTiO 3 À x Perovskite as an efficient Bifunctional Oxygen Electrocatalyst. Nano Energy. 2015; 13: 423-432. https://doi.org/10.1016/j.nanoen.2015.03.005.
- 103Sun H, Chen G, Zhu Y, Liu B, Zhou W, Shao Z. B-site Cation Ordered double Perovskites as efficient and stable Electrocatalysts for oxygen evolution reaction. Chem A Eur J. 2017; 23(24): 5722-5728. https://doi.org/10.1002/chem.201700507.
- 104Hu J, Shi L, Liu Q, Jiao T. RSC advances Modified LaMnO3—Graphene via shortens the. RSC Adv. 2015; 5: 92096-92106. https://doi.org/10.1039/C5RA14928B.
- 105Han X, Cheng F, Zhang T, Yang J, Hu Y, Chen J. Hydrogenated uniform Pt clusters supported on porous CaMnO 3 as a Bifunctional Electrocatalyst for enhanced oxygen reduction and evolution. Adv. Mater. 2014; 26(13): 2047-2051. https://doi.org/10.1002/adma.201304867.
- 106Wang Z, You Y, Yuan J, et al. Nickel-doped La Sr Mn Ni O nanoparticles containing abundant oxygen vacancies as an optimized Bifunctional catalyst for oxygen cathode in rechargeable lithium-air Batteries. Appl Mater Interfaces. 2016; 8(10): 6520-6528. https://doi.org/10.1021/acsami.6b00296.
- 107Chen G, Zhu Y, Chen HM, et al. An amorphous nickel—iron-based Electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv Mater. 2019; 31: 1900883. https://doi.org/10.1002/adma.201900883.
- 108Sun H, Chen G, Sunarso J, Dai J, Zhou W, Shao Z. Molybdenum and niobium Codoped B-site-Ordered double Perovskite catalyst for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces. 2018; 10(20): 16939-16942. https://doi.org/10.1021/acsami.8b03702.
- 109Duan Y, Sun S, Xi S, et al. Tailoring the Co 3d-O 2p Covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem Mater. 2017; 29(24): 10534-10541.
- 110Singh RN, Kumar M, Sinha ASK. Novel FexCr2− x (MoO4) 3 Electrocatalysts for oxygen evolution reaction. Int J Hydrogen Energy. 2012; 37(20): 15117-15124.
- 111Zhu Y, Zhou W, Zhong Y, Bu Y, Chen X, Zhong QA. Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Adv. Energy Mater. 2016; 7(8). https://doi.org/10.1002/aenm.201602122.
- 112Du J, Zhang T, Cheng F, Chu W, Wu Z, Chen J. Nonstoichiometric Perovskite CaMnO3−δ for oxygen Electrocatalysis with high activity. Inorg Chem. 2014; 53(17): 9106-9114. https://doi.org/10.1021/ic501631h.
- 113Kim J, Yin X, Tsao K, Fang S, Yang H. Ca2Mn2O5 as oxygen-De fi Cient Perovskite Electrocatalyst for oxygen evolution reaction. J Am Chem Soc. 2014; 136: 14646-14649. https://doi.org/10.1021/ja506254g.
- 114Tavares AC, Tummino ML, Soares CO, et al. Perovskite-type catalysts prepared by Nanocasting: effect of metal silicates on the Electrocatalytic activity toward oxygen evolution and reduction reactions. ACS Appl Energy Mater. 2018; 1(6): 2565-2575. https://doi.org/10.1021/acsaem.8b00282.
- 115Zhu Y, Zhou W, Yu J, Chen Y, Liu M, Shao Z. Enhancing Electrocatalytic activity of Perovskite oxides by tuning Cation deficiency for oxygen reduction and evolution reactions. Chem Mater. 2016; 28(6): 1691-1697. https://doi.org/10.1021/acs.chemmater.5b04457.
- 116Zhou, W.; Sunarso, J. Enhancing bi-functional Electrocatalytic activity of Perovskite by temperature shock: a Case study of LaNiO3-δ. J Phys Chem Lett 2013, 4 (17), 2982-2988. https://doi.org/10.1021/jz401169n.
- 117Bu Y, Jang H, Gwon O, Kim H, Joo H. Synergistic interaction of Perovskite oxides and N-doped Graphene in versatile Electrocatalyst. J Mater Chem A. 2018; 7: 2048-2054. https://doi.org/10.1039/c8ta09919g.
- 118Liu H, Ding X, Wang L, Ding D, Zhang S, Yuan G. Cation deficiency design: a simple and efficient strategy for promoting oxygen evolution reaction activity of Perovskite Electrocatalyst. Electrochim Acta. 2018; 259(51362012): 1004-1010. https://doi.org/10.1016/j.electacta.2017.10.172.
- 119Islam QA, Majee R, Bhattacharyya S. Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis. J Mater Chem A. 2019; 7(33): 19453-19464. https://doi.org/10.1039/c9ta06123a.
- 120Sun H, He J, Hu Z, Chen C, Zhou W, Shao Z. Electrochimica Acta multi-active sites derived from a single / double Perovskite hybrid for highly efficient water oxidation. Electrochim Acta. 2019; 299: 926-932. https://doi.org/10.1016/j.electacta.2019.01.067.
- 121Chang Y, Hsieh Y, Wu P, Lai C, Chang T. Enhancement of Bifunctional catalysis by Ir doping of La 0 . 6 Ca 0 . 4 CoO 3 Perovskites. Mater Lett. 2008; 62: 4220-4222. https://doi.org/10.1016/j.matlet.2008.06.040.
- 122Xue Y, Miao H, Li B, et al. Promoting effects of Ce0.75Zr0.25O2 on La0.7Sr0.3MnO3 Electrocatalyst for oxygen reduction reaction in metal-air Batteries. J Mater Chem A. 2017; 5: 6411-6415. https://doi.org/10.1039/C6TA09795B.
- 123Tong J, Richards RM, Hayre O, Pylypenko S. Synthesis of high surface area CaxLa(1−x)Al(1−x)MnxO(3−δ) Perovskite oxides for oxygen reduction Electrocatalysis in alkaline media. Cat Sci Technol. 2016; 6(21): 7744-7751. https://doi.org/10.1039/c6cy01497f.
- 124Tulloch J, Donne SW. Activity of perovskite La1−xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes. J Power Sources. 2009; 188: 359-366. https://doi.org/10.1016/j.jpowsour.2008.12.024.
- 125Rashid K, Dong SK, Mehran MT, Lee DW. Design and analysis of compact hotbox for solid oxide fuel cell based 1 KW-class power generation system. Appl Energy. 2017; 208: 620-636. https://doi.org/10.1016/j.apenergy.2017.09.091.
- 126Rashid K, Dong SKSK, Mehran MTMT. Numerical investigations to determine the optimal operating conditions for 1 KW-class flat-tubular solid oxide fuel cell stack. Energy. 2017; 141: 673-691. https://doi.org/10.1016/j.energy.2017.09.082.
- 127Hu J, Liu Q, Shi L, Shi Z, Huang H. Silver decorated LaMnO3 Nanorod/Graphene composite Electrocatalysts as reversible metal-air battery electrodes. Appl Surf Sci. 2017; 402: 61-69.
- 128Nishio K, Molla S, Okugaki T, Nakanishi S, Nitta I, Kotani Y. Oxygen reduction and evolution reactions of air electrodes using a Perovskite oxide as an Electrocatalyst. J Power Sources. 2015; 278: 645-651.
- 129Naqvi SR, Naqvi M. Catalytic fast pyrolysis of Rice husk: influence of commercial and synthesized microporous zeolites on Deoxygenation of biomass pyrolysis vapors. Int J Energy Res. 2018; 42(3): 1352-1362. https://doi.org/10.1002/er.3943.
- 130Sun Q, Dai Z, Zhang Z, et al. Double Perovskite PrBaCo2O5.5: an efficient and stable Electrocatalyst for hydrogen evolution reaction. J Power Sources. 2019; 427: 194-200. https://doi.org/10.1016/j.jpowsour.2019.04.070.
- 131Lee Y, Grimaud A, In Shao-horn Y. Fl Uence of oxygen evolution during water oxidation on the surface of Perovskite oxide catalysts. J. Phys. Chem. Lett. 2012; 3(22): 3264-3270. https://doi.org/10.1021/jz301414z.
- 132Zhu Y, Zhou W, Sunarso J, Zhong Y, Shao Z. Phosphorus-doped Perovskite oxide as highly efficient water oxidation Electrocatalyst in alkaline solution. Adv Funct Mater. 2016; 26(32): 5862-5872. https://doi.org/10.1002/adfm.201601902.
- 133Sikander U, Samsudin MF, Sufian S, et al. Tailored Hydrotalcite-based mg-Ni-Al catalyst for hydrogen production via methane decomposition: effect of nickel concentration and spinel-like structures. Int J Hydrogen Energy. 2019; 44: 14424-14433. https://doi.org/10.1016/j.ijhydene.2018.10.224.
- 134Yuasa M, Sakai G, Shimanoe K, Teraoka Y, Yamazoe N. Reverse micelle-based preparation of carbon-supported La 1 À x Sr x Mn 1 À y Fe y O 3 ¿ ␦ for oxygen reduction electrode. J Electrochem Soc. 2004; 151: 1690-1695. https://doi.org/10.1149/1.1789156.
- 135Singh RN, Singh JP, Singh A. Electrocatalytic properties of new spinel-type MMoO4 (M= Fe, co and Ni) electrodes for oxygen evolution in alkaline Solutions. Int J Hydrogen Energy. 2008; 33(16): 4260-4264.
- 136Bu Y, Kim S, Kwon O, Zhong Q, Kim G. A composite catalyst based on Perovskites for overall water splitting in alkaline conditions. Chemelectrochem Commun. 2019; 6(5):: 1520-1524. https://doi.org/10.1002/celc.201801775.
- 137Xiao C, Li Y, Lu X, Zhao C. Bifunctional porous NiFe / NiCo 2 O 4 / Ni foam electrodes with triple hierarchy and double synergies for Effi Cient whole cell water splitting. Adv Funct Mater. 2016; 26(20): 3515-3523. https://doi.org/10.1002/adfm.201505302.
- 138Liu D, Lu Q, Luo Y, Sun X, Asiri AM. Splitting with Superior Activity †. Nanoscale. 2015; 7: 15122-15126. https://doi.org/10.1039/c5nr04064g.
- 139Grimaud A, May KJ, Carlton CE, et al. Double Perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun. 2013; 4(1): 2439. https://doi.org/10.1038/ncomms3439.
- 140Wang J, Gao Y, Chen D, et al. Water splitting with an enhanced Bifunctional double Perovskite. ACS Catal. 2018; 8(1): 364-371. https://doi.org/10.1021/acscatal.7b02650.
- 141Stevenson KJ. Highly active, nonprecious metal Perovskite Electrocatalysts for Bifunctional metal—air battery electrodes. J. Phys. Chem. Lett. 2013; 4(8): 1254-1259. https://doi.org/10.1021/jz400595z.
- 142Yuasa M, Tachibana N, Shimanoe K. Oxygen reduction activity of carbon-supported La1−xCaxMn1−yFeyO3 nanoparticles. Chem Mater. 2013; 25(15): 3072-3079. https://doi.org/10.1021/cm401276y.
- 143Park S, Lee E, Song H, Kim Y. Bifunctional Enhancement of Oxygen Reduction Reaction Activity on Ag Catalysts Due to Water Activation on LaMnO 3 Supports in Alkaline Media. Sci Rep. 2015; 5: 13552. https://doi.org/10.1038/srep13552.
- 144Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett. 1985; 55(22): 2471-2474. https://doi.org/10.1103/PhysRevLett.55.2471.
- 145Thomas LH. The Calculation of Atomic fields. Math Proc Cambridge Philos Soc. 2008; 23: 542-548. https://doi.org/10.1017/S0305004100011683.
10.1017/S0305004100011683 Google Scholar
- 146Fermi E. Eine Statistische Methode Zur Bestimmung Einiger Eigenschaften Des Atoms Und Ihre Anwendung Auf Die Theorie Des Periodischen Systems Der Elemente. Zeitschrift für Phys. 1928; 48(1): 73-79. https://doi.org/10.1007/BF01351576.
- 147Callaway J, March NH. Density Functional Methods : Theory and Applications. Solid State Phys. 1984; 38: 135-221. https://doi.org/10.1016/S0081-1947(08)60313-6.
- 148Dirac PAM. Note on exchange phenomena in the Thomas atom. Math Proc Cambridge Philos Soc. 1930; 26(3): 376-385. https://doi.org/10.1017/S0305004100016108.
- 149Slater JC. A simplification of the Hartree-Fock method. Phys. Rev. 1951; 81(3): 385-390. https://doi.org/10.1103/PhysRev.81.385.
- 150Lewis HR. An Approach to Screening for Coulomb Wave Functions*. J Math Anal Appl. 1965; 11: 338-349.
- 151Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964; 136(3B): B864-B871. https://doi.org/10.1103/PhysRev.136.B864.
- 152Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965; 140(4A): A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133.
- 153Finocchi F, Paris N. De. Density Functional Theory for Beginners Basic Principles and Practical Approaches. 2011.
- 154Yamada I, Fujii H, Takamatsu A, et al. Bifunctional oxygen reaction catalysis of quadruple manganese Perovskites. Adv Mater. 2017; 29(4): 1-6. https://doi.org/10.1002/adma.201603004.
- 155Zhao B, Zhang L, Zhen D, et al. A tailored double Perovskite Nanofiber catalyst enables ultrafast oxygen evolution. Nat Commun. 2017; 8(1): 14586. https://doi.org/10.1038/ncomms14586.
- 156Nagy Á. Density functional. Theory and application to atoms and molecules. Phys Rep. 1998; 298(1): 1-79. https://doi.org/10.1016/S0370-1573(97)00083-5.
- 157Lee Y-L, Gadre MJ, Yang Shao-Horn DM. Ab initio GGA+U study of oxygen evolution and oxygen reduction Electrocatalysis on the (001) surfaces of lanthanum transition metal Perovskites LaBO3 (B=Cr, Mn, Fe, co and Ni). Phys Chem Chem Phys. 2015; 17(33): 21643-21663. https://doi.org/10.1039/C5CP02834E.
- 158Tang R, Nie Y, Kawasaki JK, et al. Oxygen evolution reaction electrocatalysis on SrIrO3 grown using molecular beam epitaxy†. J Mater Chem A. 2016; 4(18): 6831-6836. https://doi.org/10.1039/C5TA09530A.
- 159Grimaud A, May KJ, Carlton CE, et al. Catalysts for Oxygen Evolution in Alkaline Solution. Nat. Commun. 2013; 4. https://doi.org/10.1038/ncomms3439.
- 160May KJ, Carlton CE, Stoerzinger KA, et al. Influence of oxygen evolution during water oxidation on the surface of Perovskite oxide catalysts. J. Phys. Chem. Lett. 2012; 3(22): 3264-3270. https://doi.org/10.1021/jz301414z.