Functional connectivity between the habenula and default mode network and its association with the antidepressant effect of ketamine
Mingqia Wang
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorXiaoyu Chen
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorYiru Hu
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorYangling Zhou
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
Search for more papers by this authorChengyu Wang
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorWei Zheng
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorWeijian Liu
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorXiaofeng Lan
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorCorresponding Author
Yuping Ning
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
Correspondence Yuping Ning and Bin Zhang, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Rd 36, Liwan District, Guangzhou 510370, Guangdong, China.
Email: [email protected] and
Search for more papers by this authorCorresponding Author
Bin Zhang
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
Correspondence Yuping Ning and Bin Zhang, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Rd 36, Liwan District, Guangzhou 510370, Guangdong, China.
Email: [email protected] and
Search for more papers by this authorMingqia Wang
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorXiaoyu Chen
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorYiru Hu
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorYangling Zhou
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
Search for more papers by this authorChengyu Wang
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorWei Zheng
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorWeijian Liu
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorXiaofeng Lan
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorCorresponding Author
Yuping Ning
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
Correspondence Yuping Ning and Bin Zhang, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Rd 36, Liwan District, Guangzhou 510370, Guangdong, China.
Email: [email protected] and
Search for more papers by this authorCorresponding Author
Bin Zhang
PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
Correspondence Yuping Ning and Bin Zhang, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Rd 36, Liwan District, Guangzhou 510370, Guangdong, China.
Email: [email protected] and
Search for more papers by this authorAbstract
Background
Recently, an animal model for depression has shown that ketamine, an N-methyl- d-aspartate receptor (NMDAR) antagonist, elicits a rapid-acting antidepressant effect by blocking NMDAR-dependent bursting in the lateral habenula (Hb). However, evidence from human studies remains scarce.
Methods
This study explored the changes of resting-state functional connectivity (FC) of the Hb in responders and nonresponders who was diagnosed with unipolar or bipolar depression before and after ketamine treatment. The response was defined as a ≥50% reduction in the total MADRS score at Day 13 (24 h following the sixth infusion) in comparison with the baseline score. Correlation analyses were performed to identify an association between symptom improvement and the signals of the significantly different brain regions detected in the above imaging analysis.
Results
In the post-hoc region-of-interest analysis, an enhanced baseline FC between Hb and several hubs of the default mode network (including angulate cortex, precuneus, medial prefrontal cortex, and middle temporal cortex) was observed in responders (≥50% decrease in the Montgomery–Asberg Scale at 2 weeks) compared with nonresponders.
Conclusions
These pilot findings may suggest a potential neural mechanism by which ketamine exerts its robust antidepressant efficacy via downregulation of aberrant habenular FC with parts of the default mode network.
CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
Some or all data used during the study are available from the corresponding author by request.
Supporting Information
Filename | Description |
---|---|
da23238-sup-0001-2021_1113_Re1_SupplementaryMaterial_Table_S1_S2.docx19.7 KB | Supplementary information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- aan het Rot, M., Collins, K. A., Murrough, J. W., Perez, A. M., Reich, D. L., Charney, D. S., & Mathew, S. J. (2010). Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biological Psychiatry, 67, 139–145.
- Abdallah, C. G., Sanacora, G., Duman, R. S., & Krystal, J. H. (2018). The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacology and Therapeutics, 190, 148–158.
- Ambrosi, E., Arciniegas, D. B., Curtis, K. N., Patriquin, M. A., Spalletta, G., Sani, G., Frueh, B. C., Fowler, J. C., Madan, A., & Salas, R. (2019). Resting-state functional connectivity of the habenula in mood disorder patients with and without suicide-related behaviors. Journal of Neuropsychiatry and Clinical Neurosciences, 31, 49–56.
- Batalla, A., Homberg, J. R., Lipina, T. V., Sescousse, G., Luijten, M., Ivanova, S. A., Schellekens, A. F. A., & Loonen, A. J. M. (2017). The role of the habenula in the transition from reward to misery in substance use and mood disorders. Neuroscience and Biobehavioral Reviews, 80, 276–285.
- Belmaker, R. H., & Agam, G. (2008). Major depressive disorder. The New England Journal of Medicine, 358, 55–68.
- Benekareddy, M., Stachniak, T. J., Bruns, A., Knoflach, F., von Kienlin, M., Künnecke, B., & Ghosh, A. (2018). Identification of a corticohabenular circuit regulating socially directed behavior. Biological Psychiatry, 83, 607–617.
- Berman, R. M., Cappiello, A., Anand, A., Oren, D. A., Heninger, G. R., Charney, D. S., & Krystal, J. H. (2000). Antidepressant effects of ketamine in depressed patients. Biological Psychiatry, 47, 351–354.
- Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.
- Carlson, P. J., Diazgranados, N., Nugent, A. C., Ibrahim, L., Luckenbaugh, D. A., Brutsche, N., Herscovitch, P., Manji, H. K., Zarate, C. A., & Drevets, W. C. (2013). Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: A preliminary positron emission tomography study. Biological Psychiatry, 73, 1213–1221.
- Chen, X., Wang, M., Hu, Y., Zhan, Y., Zhou, Y., Zheng, W., Liu, W., Wang, C., Zhong, X., Li, H., Lan, X., Ning, Y., & Zhang, B. (2021). Working memory associated with anti-suicidal ideation effect of repeated-dose intravenous ketamine in depressed patients. European Archives of Psychiatry and Clinical Neuroscience, 271, 431–438.
- Clemm von Hohenberg, C., Weber-Fahr, W., Lebhardt, P., Ravi, N., Braun, U., Gass, N., Becker, R., Sack, M., Cosa Linan, A., Gerchen, M. F., Reinwald, J. R., Oettl, L. L., Meyer-Lindenberg, A., Vollmayr, B., Kelsch, W., & Sartorius, A. (2018). Lateral habenula perturbation reduces default-mode network connectivity in a rat model of depression. Translational Psychiatry, 8, 68.
- Cui, Y., Hu, S., & Hu, H. (2019). Lateral habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends in Neurosciences, 42, 179–191.
- Ely, B. A., Stern, E. R., Kim, J. W., Gabbay, V., & Xu, J. (2019). Detailed mapping of human habenula resting-state functional connectivity. NeuroImage, 200, 621–634.
- Ely, B. A., Xu, J., Goodman, W. K., Lapidus, K. A., Gabbay, V., & Stern, E. R. (2016). Resting-state functional connectivity of the human habenula in healthy individuals: Associations with subclinical depression. Human Brain Mapping, 37, 2369–2384.
- Erpelding, N., Sava, S., Simons, L. E., Lebel, A., Serrano, P., Becerra, L., & Borsook, D. (2014). Habenula functional resting-state connectivity in pediatric CRPS. Journal of Neurophysiology, 111(2), 239–247.
- Evans, J. W., Szczepanik, J., Brutsché, N., Park, L. T., Nugent, A. C., & Zarate, C. A., Jr. (2018). Default mode connectivity in major depressive disorder measured up to 10 days after ketamine administration. Biological Psychiatry, 84, 582–590.
- Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101, 3270–3283.
- Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35, 346–355.
- Gao, J., Li, Y., Wei, Q., Li, X., Wang, K., Tian, Y., & Wang, J. (2020). Habenula and left angular gyrus circuit contributes to response of electroconvulsive therapy in major depressive disorder. Brain Imaging and Behavior, 15, 2246–2253.
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392, 1789–1858.
- Gosnell, S. N., Curtis, K. N., Velasquez, K., Fowler, J. C., Madan, A., Goodman, W., & Salas, R. (2019). Habenular connectivity may predict treatment response in depressed psychiatric inpatients. Journal of Affective Disorders, 242, 211–219.
- Grande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. Lancet, 387, 1561–1572.
- Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., Reiss, A. L., & Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62, 429–437.
- Gryglewski, G., Klöbl, M., Nics, L., Hahn, A., Philippe, C., Rischka, L., Kautzky, A., Hartenbach, M., Wadsak, W., Mitterhauser, M., Kasper, S., & Lanzenberger, L. (2016). Attenuation of habenula-default mode network connectivity by selective serotonin reuptake inhibitors, a pharmacological hybrid PET/MR study. European Neuropsychopharmacology, 26, S317.
- Hétu, S., Luo, Y., Saez, I., D'Ardenne, K., Lohrenz, T., & Montague, P. R. (2016). Asymmetry in functional connectivity of the human habenula revealed by high-resolution cardiac-gated resting state imaging. Human Brain Mapping, 37, 2602–2615.
- Hikosaka, O. (2010). The habenula: From stress evasion to value-based decision-making. Nature Reviews Neuroscience, 11, 503–513.
- du Jardin, K. G., Müller, H. K., Elfving, B., Dale, E., Wegener, G., & Sanchez, C. (2016). Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 71, 27–38.
- Jia, X.-Z., Wang, J., Sun, H.-Y., Zhang, H., Liao, W., Wang, Z., Yan, C. G., Song, X. W., & Zang, Y. F. (2019). RESTplus: An improved toolkit for resting-state functional magnetic resonance imaging data processing. Science Bulletin, 64, 953–954.
- Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72, 603–611.
- Lammel, S., Lim, B. K., Ran, C., Huang, K. W., Betley, M. J., Tye, K. M., Deisseroth, K., & Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491, 212–217.
- Lawson, R. P., Drevets, W. C., & Roiser, J. P. (2013). Defining the habenula in human neuroimaging studies. NeuroImage, 64, 722–727.
- Luan, S. X., Zhang, L., Wang, R., Zhao, H., & Liu, C. (2019). A resting-state study of volumetric and functional connectivity of the habenular nucleus in treatment-resistant depression patients. Brain and Behavior, 9, e01229.
- Montgomery, S. A., & Asberg, M. (1979). A new depression scale designed to be sensitive to change. The British Journal of Psychiatry, 134, 382–389.
- Morris, J. S., Smith, K. A., Cowen, P. J., Friston, K. J., & Dolan, R. J. (1999). Covariation of activity in habenula and dorsal raphé nuclei following tryptophan depletion. NeuroImage, 10, 163–172.
- Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience and Biobehavioral Reviews, 56, 330–344.
- Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44, 893–905.
- Murrough, J. W., Iosifescu, D. V., Chang, L. C., Al Jurdi, R. K., Green, C. E., Perez, A. M., Iqbal, S., Pillemer, S., Foulkes, A., Shah, A., Charney, D. S., & Mathew, S. J. (2013). Antidepressant efficacy of ketamine in treatment-resistant major depression: A two-site randomized controlled trial. American Journal of Psychiatry, 170, 1134–1142.
- Murrough, J. W., Perez, A. M., Pillemer, S., Stern, J., Parides, M. K., aan het Rot, M., Collins, K. A., Mathew, S. J., Charney, D. S., & Iosifescu, D. V. (2013). Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biological Psychiatry, 74, 250–256.
- Qiao, D., Zhang, A., Sun, N., Yang, C., Li, J., Zhao, T., Wang, Y., Xu, Y., Wen, Y., Zhang, K., & Liu, Z. (2020). Altered static and dynamic functional connectivity of habenula associated with suicidal ideation in first-episode, drug-naïve patients with major depressive disorder. Frontiers in Psychiatry, 11, 608197.
- Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.
- Rivas-Grajales, A. M., Salas, R., Robinson, M. E., Qi, K., Murrough, J. W., & Mathew, S. J. (2021). Habenula connectivity and intravenous ketamine in treatment-resistant depression. International Journal of Neuropsychopharmacology, 24, 383–391.
- Roiser, J. P., Levy, J., Fromm, S. J., Nugent, A. C., Talagala, S. L., Hasler, G., Henn, F. A., Sahakian, B. J., & Drevets, W. C. (2009). The effects of tryptophan depletion on neural responses to emotional words in remitted depression. Biological Psychiatry, 66, 441–450.
- Rong, C., Park, C., Rosenblat, J., Subramaniapillai, M., Zuckerman, H., Fus, D., Lee, Y., Pan, Z., Brietzke, E., Mansur, R., Cha, D., Lui, L., & McIntyre, R. (2018). Predictors of response to ketamine in treatment resistant major depressive disorder and bipolar disorder. International Journal of Environmental Research and Public Health, 15, 771.
- Ruhé, H. G., Mason, N. S., & Schene, A. H. (2007). Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Molecular Psychiatry, 12, 331–359.
- Sartorius, A., & Henn, F. A. (2007). Deep brain stimulation of the lateral habenula in treatment resistant major depression. Medical Hypotheses, 69, 1305–1308.
- Sartorius, A., Kiening, K. L., Kirsch, P., von Gall, C. C., Haberkorn, U., Unterberg, A. W., Henn, F. A., & Meyer-Lindenberg, A. (2010). Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biological Psychiatry, 67, e9–e11.
- Savitz, J. B., Bonne, O., Nugent, A. C., Vythilingam, M., Bogers, W., Charney, D. S., & Drevets, W. C. (2011). Habenula volume in post-traumatic stress disorder measured with high-resolution MRI. Biology of Mood & Anxiety Disorders, 1(1), 7.
- Savitz, J. B., Nugent, A. C., Bogers, W., Roiser, J. P., Bain, E. E., Neumeister, A., Zarate, C. A., Manji, H. K., Cannon, D. M., Marrett, S., Henn, F., Charney, D. S., & Drevets, W. C. (2011). Habenula volume in bipolar disorder and major depressive disorder: A high-resolution magnetic resonance imaging study. Biological Psychiatry, 69(4), 336–343.
- Scheidegger, M., Walter, M., Lehmann, M., Metzger, C., Grimm, S., Boeker, H., Boesiger, P., Henning, A., & Seifritz, E. (2012). Ketamine decreases resting state functional network connectivity in healthy subjects: Implications for antidepressant drug action. PLoS One, 7, e44799.
- Shiroma, P. R., Johns, B., Kuskowski, M., Wels, J., Thuras, P., Albott, C. S., & Lim, K. O. (2014). Augmentation of response and remission to serial intravenous subanesthetic ketamine in treatment resistant depression. Journal of Affective Disorders, 155, 123–129.
- Siegel, J. S., Palanca, B. J. A., Ances, B. M., Kharasch, E. D., Schweiger, J. A., Yingling, M. D., Snyder, A. Z., Nicol, G. E., Lenze, E. J., & Farber, N. B. (2021). Prolonged ketamine infusion modulates limbic connectivity and induces sustained remission of treatment-resistant depression. Psychopharmacology, 238, 1157–1169.
- Singh, I., Morgan, C., Curran, V., Nutt, D., Schlag, A., & McShane, R. (2017). Ketamine treatment for depression: Opportunities for clinical innovation and ethical foresight. Lancet Psychiat, 4, 419–426.
- Stamatakis, A. M., & Stuber, G. D. (2012). Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature Neuroscience, 15, 1105–1107.
- Wang, M., Zhang, B., Zhou, Y., Wang, C., Zheng, W., Liu, W., Zhan, Y., Lan, X., & Ning, Y. (2021). Sleep improvement is associated with the antidepressant efficacy of repeated-dose ketamine and serum BDNF levels: A post-hoc analysis. Pharmacological Reports, 73, 594–603.
- Wu, Z., Wang, C., Ma, Z., Pang, M., Wu, Y., Zhang, N., & Zhong, Y. (2020). Abnormal functional connectivity of habenula in untreated patients with first-episode major depressive disorder. Psychiatry Research, 285, 112837.
- Yan, C. G., Chen, X., Li, L., Castellanos, F. X., Bai, T. J., Bo, Q. J., Cao, J., Chen, G. M., Chen, N. X., Chen, W., Cheng, C., Cheng, Y. Q., Cui, X. L., Duan, J., Fang, Y. R., Gong, Q. Y., Guo, W. B., Hou, Z. H., Hu, L., … Zang, Y. F. (2019). Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proceedings of the National Academy of Sciences of the United States of America, 116, 9078–9083.
- Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., Li, Q., Zuo, X. N., Castellanos, F. X., & Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage, 76, 183–201.
- Yang, Y., Cui, Y., Sang, K., Dong, Y., Ni, Z., Ma, S., & Hu, H. (2018). Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature, 554, 317–322.
- Yang, Y., Wang, H., Hu, J., & Hu, H. (2018). Lateral habenula in the pathophysiology of depression. Current Opinion in Neurobiology, 48, 90–96.
- Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.
- Zacharias, N., Musso, F., Müller, F., Lammers, F., Saleh, A., London, M., de Boer, P., & Winterer, G. (2020). Ketamine effects on default mode network activity and vigilance: A randomized, placebo-controlled crossover simultaneous fMRI/EEG study. Human Brain Mapping, 41(1), 107–119.
- Zarate, C. A., Jr., Singh, J. B., Carlson, P. J., Brutsche, N. E., Ameli, R., Luckenbaugh, D. A., Singh, J. B., Carlson, P. J., Brutsche, N. E., Ameli, R., Luckenbaugh, D. A., Charney, D. S., & Manji, H. K. (2006). A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Archives of General Psychiatry, 63, 856–864.
- Zhang, B., Li, S., Zhuo, C., Li, M., Safron, A., Genz, A., Qin, W., Yu, C., & Walter, M. (2017). Altered task-specific deactivation in the default mode network depends on valence in patients with major depressive disorder. Journal of Affective Disorders, 207, 377–383.
- Zheng, W., Zhou, Y. L., Wang, C. Y., Lan, X. F., Zhang, B., Zhou, S. M., Yan, S., Yang, M. Z., Nie, S., & Ning, Y. P. (2020). Association between plasma levels of BDNF and the antisuicidal effects of repeated ketamine infusions in depression with suicidal ideation. Therapeutic Advances in Psychopharmacology, 10, 2045125320973794.
- Zhou, Y., Zheng, W., Liu, W., Wang, C., Zhan, Y., Li, H., Chen, L., Li, M., & Ning, Y. (2018). Antidepressant effect of repeated ketamine administration on kynurenine pathway metabolites in patients with unipolar and bipolar depression. Brain, Behavior, and Immunity, 74, 205–212.
- Zhou, Y. L., Wu, F. C., Liu, W. J., Zheng, W., Wang, C. Y., Zhan, Y. N., Lan, X. F., & Ning, Y. P. (2020). Volumetric changes in subcortical structures following repeated ketamine treatment in patients with major depressive disorder: A longitudinal analysis. Translational Psychiatry, 10, 264.
- Zhu, Y., Qi, S., Zhang, B., He, D., Teng, Y., Hu, J., & Wei, X. (2019). Connectome-based biomarkers predict subclinical depression and identify abnormal brain connections with the lateral habenula and thalamus. Frontiers in Psychiatry, 10, 371.