Aggregation-Induced Emission: A Rising Star in Chemistry and Materials Science
Ting Han
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorDingyuan Yan
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorQian Wu
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorNan Song
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorHaoke Zhang
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorCorresponding Author
Dong Wang
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
E-mail: [email protected]Search for more papers by this authorTing Han
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorDingyuan Yan
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorQian Wu
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorNan Song
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorHaoke Zhang
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorCorresponding Author
Dong Wang
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
E-mail: [email protected]Search for more papers by this authorAbstract
Aggregation-induced emission (AIE) refers to a photophysical effect that the luminescence of aggregates is stronger than that of the dispersed state. Since the concept of AIE was coined by Professor Ben Zhong Tang and co-workers in 2001, AIE has evolved from a simple luminescent phenomenon to a multidisciplinary research field with a widespread influence. It has changed people's way of thinking about chromophore aggregation and greatly promoted the development of advanced luminescent materials. During the 20-year development, diverse AIE luminogens (AIEgens) with attractive functionalities have been developed and remarkable achievements have been made in the mechanistic study and high-tech applications of AIEgens. In this review, we provide an overview of the historical development and representative achievements of AIE research. Perspectives on the application of AIE in aggregate science are also briefly discussed to guide the future development in this field.
References
- 1(a) Safford, W. E. Lignum Nephriticum – Its History and An Account of the Remarkable Fluorescence of Its Infusion. Ann. Rep. Smithsonian Inst. 1915, 271–298;
(b) Partington, J. R. Lignum nephriticum. Ann. Sci. 1955, 11, 1–26;
10.1080/00033795500200015 Google Scholar(c) Ohaver, T. C. Development of Luminescence Spectrometry as an Analytical Tool. J. Chem. Educ. 1978, 55, 423–428; (d) Valeur, B.; Berberan-Santos, M. N. A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory. J. Chem. Educ. 2011, 88, 731–738.
- 2Braslavsky, S. E. Glossary of Terms Used in Photochemistry, 3rd Edition (IUPAC Recommendations 2006). Pure Appl. Chem. 2007, 79, 293–465.
- 3(a) Zhang, H. K.; Zhao, Z.; Turley, A. T.; Wang, L.; McGonigal, P. R.; Tu, Y. J.; Li, Y. Y.; Wang, Z. Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregate Science: From Structures to Properties. Adv. Mater. 2020, 32, 2001457; (b) Acuña, A. U.; Amat-Guerri, F. Early History of Solution Fluorescence: The Lignum nephriticum of Nicolás Monardes. In Fluorescence of Supermolecules, Polymers, and Nanosystems. Springer Series on Fluorescence, Vol. 4, Springer, Berlin, Heidelberg, 2007.
- 4 Perrin, J. B. Observations sur la Fluorescence. C. R. Acad. Sci. 1923, 177, 469–475.
- 5 Förster, T.; Kasper, K. Ein Konzentrationsumschlag der Fluoreszenz des Pyrens. Ber. Bunsenges. Phys. Chem. 1955, 59, 976–980.
- 6 Birks, J. B. Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970.
- 7 Clarke, E. D. Account of a Newly Discovered Variety of Green Fluor Spar, of Very Uncommon Beauty, and with Remarkable Properties of Colour and Phosphorescence. Ann. Philos. 1819, 14, 34–36.
- 8 Przibram, K. Fluorescence of Fluorite and the Bivalent Europium Ion. Nature 1935, 135, 100–100.
- 9(a) Stokes, G. G. On the Change of the Refrangibility of Light. Philos. Trans. Royal Soc. 1853, 143, 385–396;
10.1098/rstl.1853.0016 Google Scholar(b) Zhao, Z.; Wang, Z.; Tavakoli, J.; Peng, C.; Xiong, Y.; Tang, Y.; Lam, J. W. Y.; Tang, B. Z. A X-ray Excitable Vibrational AIE System Based on Platinum (II) Salts. ChemRxiv 2019, DOI: 10.26434/chemrxiv.8796098.
- 10(a) Deans, R.; Kim, J.; Machacek, M. R.; Swager, T. M. A Poly (P-Phenyleneethynylene) with a Highly Emissive Aggregated Phase. J. Am. Chem. Soc. 2000, 122, 8565–8566;
(b) Antolini, L.; Tedesco, E.; Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Casarini, D.; Gigli, G.; Cingolani, R. Molecular Packing and Photoluminescence Efficiency in Odd-Membered Oligothiophene S,S-Dioxides. J. Am. Chem. Soc. 2000, 122, 9006–9013;
(c) Wurthner, F.; Sens, R.; Etzbach, K. H.; Seybold, G. Design, Synthesis, and Evaluation of a Dye Library: Glass-Forming and Solid-State Luminescent Merocyanines for Functional Materials. Angew. Chem. Int. Ed. 1999, 38, 1649–1652.
10.1002/(SICI)1521-3773(19990601)38:11<1649::AID-ANIE1649>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 11 Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 1740–1741.
- 12 Tang, B. Z.; Zhan, X. W.; Yu, G.; Lee, P. P. S.; Liu, Y. Q.; Zhu, D. B. Efficient Blue Emission from Siloles. J. Mater. Chem. 2001, 11, 2974–2978.
- 13 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940.
- 14 Zhao, Z.; Zhang, H. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew. Chem. Int. Ed. 2020, 59, 9888–9907.
- 15 Chen, J. W.; Xie, Z. L.; Lam, J. W. Y.; Law, C. C. W.; Tang, B. Z. Silole-Containing Polyacetylenes. Synthesis, Thermal Stability, Light Emission, Nanodimensional Aggregation, and Restricted Intramolecular Rotation. Macromolecules 2003, 36, 1108–1117.
- 16 Tong, H.; Hong, Y. N.; Dong, Y. Q.; Haussler, M.; Lam, J. W. Y.; Li, Z.; Guo, Z. F.; Guo, Z. H.; Tang, B. Z. Fluorescent "Light-up" Bioprobes Based on Tetraphenylethylene Derivatives with Aggregation-Induced Emission Characteristics. Chem. Commun. 2006, 3705–3707.
- 17 Dong, Y. Q.; Lam, J. W. Y.; Qin, A. J.; Liu, J. Z.; Li, Z.; Tang, B. Z. Aggregation-Induced Emissions of Tetraphenylethene Derivatives and Their Utilities as Chemical Vapor Sensors and in Organic Light-Emitting Diodes. Appl. Phys. Lett. 2007, 91, 011111.
- 18 Dong, Y. Q.; Lam, J. W. Y.; Qin, A. J.; Li, Z.; Sun, J. Z.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Switching the Light Emission of (4-Biphenylyl)Phenyldibenzofulvene by Morphological Modulation: Crystallization-Induced Emission Enhancement. Chem. Commun. 2007, 40–42.
- 19 Tong, X.; Zhao, Y.; An, B. K.; Park, S. Y. Fluorescent Liquid-Crystal Gels with Electrically Switchable Photoluminescence. Adv. Funct. Mater. 2006, 16, 1799–1804.
- 20(a) Chen, M.; Qin, A. J.; Lam, J. W. Y.; Tang, B. Z. Multifaceted Functionalities Constructed from Pyrazine-Based AIEgen System. Coord. Chem. Rev. 2020, 422, 213472; (b) Xu, W.; Lee, M. M. S.; Zhang, Z.; Sung, H. H. Y.; Williams, I. D.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, D.; Tang, B. Z. Facile synthesis of AIEgens with wide color tunability for cellular imaging and therapy. Chem. Sci. 2019, 10, 3494.
- 21 Zhao, Q.; Li, L.; Li, F. Y.; Yu, M. X.; Liu, Z. P.; Yi, T.; Huang, C. H. Aggregation-Induced Phosphorescent Emission (AIPE) of Iridium(Iii) Complexes. Chem. Commun. 2008, 685–687.
- 22 Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W. Y.; Tang, L.; Lu, P.; Wang, C. L.; Liu, Y.; Wang, Z. M.; Zheng, Q.; Sun, J. Z.; Ma, Y. G.; Tang, B. Z. Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. J. Phys. Chem. C 2010, 114, 6090–6099.
- 23 Shustova, N. B.; McCarthy, B. D.; Dinca, M. Turn-on Fluorescence in Tetraphenylethylene-Based Metal-Organic Frameworks: An Alternative to Aggregation-Induced Emission. J. Am. Chem. Soc. 2011, 133, 20126–20129.
- 24 Yan, X. Z.; Cook, T. R.; Wang, P.; Huang, F. H.; Stang, P. J. Highly Emissive Platinum(Ii) Metallacages. Nat. Chem. 2015, 7, 342–348.
- 25 Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible Nanoparticles with Aggregation-Induced Emission Characteristics as Far-Red/Near-Infrared Fluorescent Bioprobes for in Vitro and in Vivo Imaging Applications. Adv. Funct. Mater. 2012, 22, 771–779.
- 26(a) Yuan, W. Z.; Zhang, Y. M. Nonconventional Macromolecular Luminogens with Aggregation-Induced Emission Characteristics. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 560–574; (b) Zhang, H. K.; Zhao, Z.; McGonigal, P. R.; Ye, R. Q.; Liu, S. J.; Lam, J. W. Y.; Kwok, R. T. K.; Yuan, W. Z.; Xie, J. P.; Rogach, A. L.; Tang, B. Z. Clusterization-Triggered Emission: Uncommon Luminescence from Common Materials. Mater. Today 2020, 32, 275–292.
- 27 Zhou, X. B.; Luo, W. W.; Nie, H.; Xu, L. G.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Oligo(maleic anhydride)s: A platform for Unveiling the Mechanism of Clusteroluminescence of Non-aromatic Polymers. J. Mater. Chem. C 2017, 5, 4775–4779.
- 28 He, T.; Niu, N.; Chen, Z. J.; Li, S. J.; Liu, S. X.; Li, J. Novel Quercetin Aggregation-Induced Emission Luminogen (AIEgen) with Excited-State Intramolecular Proton Transfer for in Vivo Bioimaging. Adv. Funct. Mater. 2018, 28, 1706196.
- 29 Gu, Y. A.; Zhao, Z.; Su, H. F.; Zhang, P. F.; Liu, J. K.; Niu, G. L.; Li, S. W.; Wang, Z. Y.; Kwok, R. T. K.; Ni, X. L.; Sun, J. Z.; Qin, A. J.; Lam, J. W. Y.; Tang, B. Z. Exploration of Biocompatible AIEgens from Natural Resources. Chem. Sci. 2018, 9, 6497–6502.
- 30 Liu, J. Z.; Su, H. M.; Meng, L. M.; Zhao, Y. H.; Deng, C. M.; Ng, J. C. Y.; Lu, P.; Faisal, M.; Lam, J. W. Y.; Huang, X. H.; Wu, H. K.; Wong, K. S.; Tang, B. Z. What Makes Efficient Circularly Polarised Luminescence in the Condensed Phase: Aggregation-Induced Circular Dichroism and Light Emission. Chem. Sci. 2012, 3, 2737–2747.
- 31 Wang, J. G.; Gu, X. G.; Zhang, P. F.; Huang, X. B.; Zheng, X. Y.; Chen, M.; Feng, H. T.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Ionization and Anion-π(+) Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens. J. Am. Chem. Soc. 2017, 139, 16974–16979.
- 32 Zhang, H. K.; Zheng, X. Y.; Xie, N.; He, Z. K.; Tiu, J. K.; Leung, N. L. C.; Niu, Y. L.; Huang, X. H.; Wong, K. S.; Kwok, R. T. K.; Sung, H. H. Y.; Williams, I. D.; Qin, A. J.; Lam, J. W. Y.; Tang, B. Z. Why Do Simple Molecules with "Isolated" Phenyl Rings Emit Visible Light? J. Am. Chem. Soc. 2017, 139, 16264–16272.
- 33 Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Aggregation-Induced Emission: The Whole Is More Brilliant Than the Parts. Adv. Mater. 2014, 26, 5429–5479.
- 34 Chen, J. W.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y. P.; Lo, S. M. F.; Williams, I. D.; Zhu, D. B.; Tang, B. Z. Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater. 2003, 15, 1535–1546.
- 35 Leung, N. L. C.; Xie, N.; Yuan, W. Z.; Liu, Y.; Wu, Q. Y.; Peng, Q.; Miao, Q.; Lam, J. W. Y.; Tang, B. Z. Restriction of Intramolecular Motions: The General Mechanism Behind Aggregation-Induced Emission. Chem. - Eur. J. 2014, 20, 15349–15353.
- 36 Zhao, Z.; Zheng, X. Y.; Du, L. L.; Xiong, Y.; He, W.; Gao, X. X.; Li, C. L.; Liu, Y. J.; Xu, B.; Zhang, J.; Song, F. Y.; Yu, Y.; Zhao, X. Q.; Cai, Y. J.; He, X. W.; Kwok, R. T. K.; Lam, J. W. Y.; Huang, X. H.; Phillips, D. L.; Wang, H.; Tang, B. Z. Non-Aromatic Annulene-Based Aggregation-Induced Emission System Via Aromaticity Reversal Process. Nat. Commun. 2019, 10, 2952.
- 37 Yin, S. W.; Peng, Q.; Shuai, Z.; Fang, W. H. Y.; Wang, Y. H.; Luo, Y. Aggregation-Enhanced Luminescence and Vibronic Coupling of Silole Molecules from First Principles. Phys. Rev. B 2006, 73, 205409.
- 38 Parrott, E. P. J.; Tan, N. Y.; Hu, R. R.; Zeitler, J. A.; Tang, B. Z.; Pickwell-MacPherson, E. Direct Evidence to Support the Restriction of Intramolecular Rotation Hypothesis for the Mechanism of Aggregation-Induced Emission: Temperature Resolved Terahertz Spectra of Tetraphenylethene. Mater. Horizons 2014, 1, 251–258.
- 39(a) Zhang, T.; Zhu, G. Z.; Lin, L. L.; Mu, J. L.; Ai, B.; Li, Y. C.; Zhuo, S. P. Cyano Substitution Effect on the Emission Quantum Efficiency in Stilbene Derivatives: A Computational Study. Org. Electron. 2019, 68, 264–270; (b) Shuai, Z. G.; Wang, D.; Peng, Q.; Geng, H. Computational Evaluation of Optoelectronic Properties for Organic/Carbon Materials. Acc. Chem. Res. 2014, 47, 3301–3309; (c) Zhang, T.; Jiang, Y. Q.; Niu, Y. L.; Wang, D.; Peng, Q.; Shuai, Z. G. Aggregation Effects on the Optical Emission of 1,1,2,3,4,5-Hexaphenylsilole (Hps): A QM/MM Study. J. Phys. Chem. A 2014, 118, 9094–9104.
- 40 Li, Q. S.; Blancafort, L. A Conical Intersection Model to Explain Aggregation Induced Emission in Diphenyl Dibenzofulvene. Chem. Commun. 2013, 49, 5966–5968.
- 41 Crespo-Otero, R.; Li, Q. S.; Blancafort, L. Exploring Potential Energy Surfaces for Aggregation-Induced Emission-from Solution to Crystal. Chem. Asian J. 2019, 14, 700–714.
- 42(a) Qian, H.; Cousins, M. E.; Horak, E. H.; Wakefield, A.; Liptak, M. D.; Aprahamian, I. Suppression of Kasha's Rule as a Mechanism for Fluorescent Molecular Rotors and Aggregation-Induced Emission. Nat. Chem. 2017, 9, 83–87; (b) Tu, Y. J.; Liu, J. K.; Zhang, H. K.; Peng, Q.; Lam, J. W. Y.; Tang, B. Z. Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatom-Containing AIE Systems. Angew. Chem. Int. Ed. 2019, 58, 14911–14914; (c) Zhou, P. W.; Li, P.; Zhao, Y. L.; Han, K. L. Restriction of Flip-Flop Motion as a Mechanism for Aggregation-Induced Emission. J. Phys. Chem. Lett. 2019, 10, 6929–6935; (d) Qi, Q. K.; Huang, L.; Yang, R. Q.; Li, J.; Qiao, Q. L.; Xu, B.; Tian, W. J.; Liu, X. G.; Xu, Z. C. Rhodamine-Naphthalimide Demonstrated a Distinct Aggregation-Induced Emission Mechanism: Elimination of Dark-States Via Dimer Interactions (EDDI). Chem. Commun. 2019, 55, 1446–1449.
- 43(a) Wang, D.; Lee, M. M. S.; Xu, W. H.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Theranostics Based on AIEgens. Theranostics 2018, 8, 4925–4956; (b) Cai, X. L.; Liu, B. Aggregation-Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew. Chem. Int. Ed. 2020, 59, 9868–9886; (c) Xu, W.; Wang, D.; Tang, B. Z. NIR-II AIEgens: A Win-Win Integration towards Bioapplications. Angew. Chem. Int. Ed. 2020, DOI: https://doi.org/10.1002/anie.202005899.
- 44 Chan, C. P. Y.; Haeussler, M.; Tang, B. Z.; Dong, Y. Q.; Sin, K. K.; Mak, W. C.; Trau, D.; Seydack, M.; Renneberg, R. Silole Nanocrystals as Novel Biolabels. J. Immunol. Methods 2004, 295, 111–118.
- 45 Shi, H. B.; Liu, J. Z.; Geng, J. L.; Tang, B. Z.; Liu, B. Specific Detection of Integrin αVβ3 by Light-up Bioprobe with Aggregation-Induced Emission Characteristics. J. Am. Chem. Soc. 2012, 134, 9569–9572.
- 46(a) Gao, M.; Tang, B. Z. Aie-Based Cancer Theranostics. Coord. Chem. Rev. 2020, 402, 213076; (b) Huang, Z. F.; Wang, R. Z.; Chen, Y. L.; Liu, X. B.; Wang, K.; Mao, L. C.; Wang, K.; Yuan, J. Y.; Zhang, X. Y.; Tao, L.; Wei, Y. A Polymerizable Aggregation-Induced Emission Dye for Fluorescent Nanoparticles: Synthesis, Molecular Structure and Application in Cell Imaging. Polym. Chem. 2019, 10, 2162–2169; (c) Guo, B.; Huang, Z. M.; Shi, Q.; Middha, E.; Xu, S. D.; Li, L.; Wu, M.; Jiang, J. W.; Hu, Q. L.; Fu, Z. W.; Liu, B. Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Adv. Funct. Mater. 2020, 30, 1907093.
- 47 Hu, X. L.; Zhao, X. Q.; He, B. Z.; Zhao, Z.; Zheng, Z.; Zhang, P. F.; Shi, X. J.; Kwok, R. T. K.; Lam, J. W. Y.; Qin, A. J.; Tang, B. Z. A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. Research 2018, 2018, 3152870.
- 48(a) He, X. W.; Yang, Y. J.; Guo, Y. C.; Lu, S. G.; Du, Y.; Li, J. J.; Zhang, X. P.; Leung, N. L. C.; Zhao, Z.; Niu, G. L.; Yang, S. S.; Weng, Z.; Kwok, R. T. K.; Lam, J. W. Y.; Xie, G. M.; Tang, B. Z. Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. J. Am. Chem. Soc. 2020, 142, 3959–3969; (b) Liu, H. X.; Xiong, L. H.; Kwok, R. T. K.; He, X. W.; Lam, J. W. Y.; Tang, B. Z. AIE Bioconjugates for Biomedical Applications. Adv. Opt. Mater. 2020, 8. 2000162.
- 49 Fateminia, S. M. A.; Mao, Z.; Xu, S. D.; Yang, Z. Y.; Chi, Z. G.; Liu, B. Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications. Angew. Chem. Int. Ed. 2017, 56, 12160–12164.
- 50 Li, Z.; Dong, Y.; Mi, B. X.; Tang, Y. H.; Haussler, M.; Tong, H.; Dong, Y. P.; Lam, J. W. Y.; Ren, Y.; Sung, H. H. Y.; Wong, K. S.; Gao, P.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials. J. Phys. Chem. B 2005, 109, 10061–10066.
- 51 Yoon, S. J.; Chung, J. W.; Gierschner, J.; Kim, K. S.; Choi, M. G.; Kim, D.; Park, S. Y. Multistimuli Two-Color Luminescence Switching via Different Slip-Stacking of Highly Fluorescent Molecular Sheets. J. Am. Chem. Soc. 2010, 132, 13675–13683.
- 52 Xu, B. J.; He, J. J.; Mu, Y. X.; Zhu, Q. Z.; Wu, S. K.; Wang, Y. F.; Zhang, Y.; Jin, C. J.; Lo, C. C.; Chi, Z. G.; Lien, A.; Liua, S. W.; Xu, J. R. Very Bright Mechanoluminescence and Remarkable Mechanochromism Using a Tetraphenylethene Derivative with Aggregation-Induced Emission. Chem. Sci. 2015, 6, 3236–3241.
- 53 Chen, Y. T.; Xu, C.; Xu, B. J.; Mao, Z.; Li, J. A.; Yang, Z.; Peethani, N. R.; Liu, C.; Shi, G.; Gu, F. L.; Zhang, Y.; Chi, Z. G. Chirality-Activated Mechanoluminescence from Aggregation-Induced Emission Enantiomers with High Contrast Mechanochromism and Force-Induced Delayed Fluorescence. Mater. Chem. Front. 2019, 3, 1800–1806.
- 54(a) Lin, H. R.; Chen, S. S.; Hu, H. W.; Zhang, L.; Ma, T. X.; Lai, J. Y. L.; Li, Z. K.; Qin, A. J.; Huang, X. H.; Tang, B. Z.; Yan, H. Reduced Intramolecular Twisting Improves the Performance of 3D Molecular Acceptors in Non-Fullerene Organic Solar Cells. Adv. Mater. 2016, 28, 8546–8551; (b) De Nisi, F.; Francischello, R.; Battisti, A.; Panniello, A.; Fanizza, E.; Striccoli, M.; Gu, X.; Leung, N. L. C.; Tang, B. Z.; Pucci, A. Red-Emitting AIEgen for Luminescent Solar Concentrators. Mater. Chem. Front. 2017, 1, 1406–1412; (c) Zhao, Z.; Gao, S. M.; Zheng, X. Y.; Zhang, P. F.; Wu, W. T.; Kwok, R. T. K.; Xiong, Y.; Leung, N. L. C.; Chen, Y. C.; Gao, X. K.; Lam, J. W. Y.; Tang, B. Z. Rational Design of Perylenediimide-Substituted Triphenylethylene to Electron Transporting Aggregation-Induced Emission Luminogens (AIEgens) with High Mobility and Near-Infrared Emission. Adv. Funct. Mater. 2018, 28, 1705609.
- 55 Song, F. Y.; Xu, Z.; Zhang, Q. S.; Zhao, Z.; Zhang, H. K.; Zhao, W. J.; Qiu, Z. J.; Qi, C. X.; Zhang, H.; Sung, H. H. Y.; Williams, I. D.; Lam, J. W. Y.; Zhao, Z. J.; Qin, A. J.; Ma, D. G.; Tang, B. Z. Highly Efficient Circularly Polarized Electroluminescence from Aggregation-Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. Adv. Funct. Mater. 2018, 28, 1800051.
- 56(a) Liu, Y. C.; Li, C. S.; Ren, Z. J.; Yan, S. K.; Bryce, M. R. All-Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Nat. Rev. Mater. 2018, 3, 18020; (b) Yang, Z. Y.; Mao, Z.; Xie, Z. L.; Zhang, Y.; Liu, S. W.; Zhao, J.; Xu, J. R.; Chi, Z. G.; Aldred, M. P. Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials. Chem. Soc. Rev. 2017, 46, 915–1016; (c) Zhang, Q. S.; Li, B.; Huang, S. P.; Nomura, H.; Tanaka, H.; Adachi, C. Efficient Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence. Nat. Photon. 2014, 8, 326–332.
- 57 Huang, J.; Nie, H.; Zeng, J. J.; Zhuang, Z. Y.; Gan, S. F.; Cai, Y. J.; Guo, J. J.; Su, S. J.; Zhao, Z. J.; Tang, B. Z. Highly Efficient Nondoped Oleds with Negligible Efficiency Roll-Off Fabricated from Aggregation-Induced Delayed Fluorescence Luminogens. Angew. Chem. Int. Ed. 2017, 56, 12971–12976.
- 58 Furue, R.; Nishimoto, T.; Park, I. S.; Lee, J.; Yasuda, T. Aggregation- Induced Delayed Fluorescence Based on Donor/Acceptor-Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs. Angew. Chem. Int. Ed. 2016, 55, 7171–7175.
- 59(a) Wan, Q.; Tong, J. L.; Zhang, B.; Li, Y.; Wang, Z. M.; Tang, B. Z. Exploration of High Efficiency Aie-Active Deep/Near-Infrared Red Emitters in OLEDs with High-Radiance. Adv. Opt. Mater. 2019, 8, 1901520; (b) Chen, Z.; Ho, C. L.; Wang, L. Q.; Wong, W. Y. Single-Molecular White-Light Emitters and Their Potential Woled Applications. Adv. Mater. 2020, 32. e1903269.
- 60(a) Li, K. T.; Lin, Y. J.; Lu, C. Aggregation-Induced Emission for Visualization in Materials Science. Chem. Asian J. 2019, 14, 715–729; (b) Li, Y. Y.; Liu, S. J.; Han, T.; Zhang, H. K.; Chuah, C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Sparks Fly When AIE Meets with Polymers. Mater. Chem. Front. 2019, 3, 2207–2220; (c) Tang, X.; Zhang, L.; Hu, R.; Tang, B. Z. Multicomponent Tandem Polymerization of Aromatic Alkynes, Carbonyl Chloride, and Fischer's Base toward Poly(diene merocyanine)s. Chin. J. Chem. 2019, 37, 1264–1270; (d) Chu, Y.; Xie, Z.; Zhuang, D.; Yue, Y.; Yue, Y.; Shi, W.; Feng, S. An Intramolecular Charge Transfer and Aggregation Induced Emission Enhancement Fluorescent Probe Based on 2-Phenyl-1,2,3-triazole for Highly Selective and Sensitive Detection of Homocysteine and Its Application in Living Cells. Chin. J. Chem. 2019, 37, 1216–1222; (e) Yuan, Q.; Cheng, Y.; Lou, X.; Xia, F. Rational Fabrication and Biomedical Application of Biomolecule-Conjugated AIEgens through Click Reaction. Chin. J. Chem. 2019, 37, 1072–1082.
- 61 Alam, P.; Leung, N. L. C.; Cheng, Y. H.; Zhang, H. K.; Liu, J. K.; Wu, W. J.; Kwok, R. T. K.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angew. Chem. Int. Ed. 2019, 58, 4536–4540.
- 62(a) Liu, S. J.; Zhou, X.; Zhang, H. K.; Ou, H. L.; Lam, J. W. Y.; Liu, Y.; Shi, L. Q.; Ding, D.; Tang, B. Z. Molecular Motion in Aggregates: Manipulating Tict for Boosting Photothermal Theranostics. J. Am. Chem. Soc. 2019, 141, 5359–5368; (b) Zhao, Z.; Chen, C.; Wu, W. T.; Wang, F. F.; Du, L. L.; Zhang, X. Y.; Xiong, Y.; He, X. W.; Cai, Y. J.; Kwok, R. T. K.; Lam, J. W. Y.; Gao, X. K.; Sun, P. C.; Phillips, D. L.; Ding, D.; Tang, B. Z. Highly Efficient Photothermal Nanoagent Achieved by Harvesting Energy via Excited-State Intramolecular Motion within Nanoparticles. Nat. Commun. 2019, 10, 768.
- 63 Lim, X. The Nanolight Revolution Is Coming. Nature 2016, 531, 26–28.
- 64(a) Qin, A.; Tang, B. Z. Aggregation-Induced Emission: Fundamentals and Applications, Vol. 1 and 2, Wiley-VCH Verlag GMBH, Weinheim, 2013;
10.1002/9781118735183 Google Scholar(b) Fujiki, M.; Liu, B.; Tang, B. Z. Aggregation-Induced Emission: Materials and Applications Volume 1. ACS Symposium Series, American Chemical Society, Washington, DC, 2016; (c) Tang, Y.; Tang, B. Z. Principles and Applications of Aggregation-Induced Emission, Springer Nature, Switzerland AG, 2019.10.1007/978-3-319-99037-8 Google Scholar
- 65(a) Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, 4332–4353; (b) Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission. Chem. Soc. Rev. 2011, 40, 5361–5388; (c) Zhao, Z. J.; Lam, J. W. Y.; Tang, B. Z. Tetraphenylethene: A Versatile AIE Building Block for the Construction of Efficient Luminescent Materials for Organic Light-Emitting Diodes. J. Mater. Chem. 2012, 22, 23726–23740; (d) Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes Based on AIE Fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453; (e) Hu, R.; Leung, N. L. C.; Tang, B. Z. AIE Macromolecules: Syntheses, Structures and Functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562; (f) Liang, J.; Tang, B.; Liu, B. Specific Light-up Bioprobes Based on AIEgen Conjugates. Chem. Soc. Rev. 2015, 44, 2798–2811; (g) Hu, F.; Xu, S.; Liu, B. Photosensitizers with aggregation-induced emission: materials and biomedical applications. Adv. Mater. 2018, 30, 1801350; (h) Zhu, C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Appl. Bio Mater. 2018, 1, 1768; (i) Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471; (j) Xu, B.; Zhang, J.; Ma, S.; Chen, S.; Dong, Y.; Tian, W. 9,10-Distyrylanthracene Derivatives: Aggregation Induced Emission Mechanism and Their Applications. Prog. Chem. 2013, 25, 1079–1089; (k) Gao, M.; Tang, B. Z. Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. ACS Sens. 2017, 2, 1382−1399; (l) Li, J.; Wang, J.; Li, H.; Song, N.; Wang, D.; Tang, B. Z. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem. Soc. Rev. 2020, 49, 1144–1172.
- 66 Li, K.; Li, Y. Y.; Zhang, S. Q.; Tang, B. Z. Comprehensive Experiment on Synthesis and Characterization of Salicylaldehyde Schiff-Base Compounds with Aggregation-Induced Emission (AIE) Character. Chin. J. Chem. Educ. 2017, 38, 38–41.