Facile Synthesis of α-Haloketones by Aerobic Oxidation of Olefins Using KX as Nonhazardous Halogen Source
Zhibin Luo
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorYunge Meng
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorXinchi Gong
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorJie Wu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorYulan Zhang
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorLong-Wu Ye
State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorCorresponding Author
Chunyin Zhu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorZhibin Luo
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorYunge Meng
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorXinchi Gong
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorJie Wu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorYulan Zhang
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
Search for more papers by this authorLong-Wu Ye
State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorCorresponding Author
Chunyin Zhu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorSummary of main observation and conclusion
An operationally simple and safe synthesis of α-haloketones using KBr and KCl as nonhazardous halogen sources is reported. It involves an iron-catalysed reaction of alkenes with KBr/KCl using O2 as terminal oxidant under the irradiation of visible-light. This strategy avoids the risks associated with handling halo-contained electrophiles (Cl2, Br2, NCS, NBS). The process is tolerant to several functional groups, and extended to a range of substituted styrenes in up to 89% yield. A radical reaction pathway is proposed based on control experiments and spectroscopy studies.
Supporting Information
Filename | Description |
---|---|
cjoc201900372-sup-0001-Supinfo.pdfPDF document, 5 MB |
Appendix S1: Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Takami, K.; Usugi, S. I.; Yorimitsu, H.; Oshima, K. Radical allylation, vinylation, alkynylation, and phenylation reactions of α-halo carbonyl compounds with organoboron, organogallium, and organoindium reagents. Synthesis 2005, 824–839; (b) Larock, R. C. Comprehensive Organic Transformations, 2nd ed., VCH, New York, 1999
- 2(a) Attanasi, O. A.; Berretta, S.; Favi, G.; Filippone, G. P.; Mele, G.; Moscatelli, G.; Saladino, R. Tetrabromo hydrogenated cardanol: Efficient and renewable brominating agent. Org. Lett. 2006, 8, 4291–4293; (b) Choi, H. Y.; Chi, D. Y. Nonselective bromination-selective debromination strategy: Selective bromination of unsymmetrical ketones on singly activated carbon against doubly activated carbon. Org. Lett. 2003, 5, 411–414; (c) Paul, S.; Gupta, V.; Gupta, R. A simple and selective procedure for α-bromination of alkanones using hexamethylenetetramine-bromine complex and basic alumina in solvent-free conditions. Synth. Commun. 2003, 33, 1917–1922; (d) Guha, S. K.; Wu, B.; Kim, B. S.; Baik, W.; Koo, S. TMS·OTf-Catalyzed α-bromination of carbonyl compounds by N-bromosuccinimide. Tetrahedron Lett. 2006, 47, 291–293; (e) Meshram, H. M.; Reddy, P. N.; Vishnu, P.; Sadashiv, K.; Yadav, J. S. A green approach for efficient α-halogenation of β-dicarbonyl compounds and cyclic ketones using N-halosuccinimides in ionic liquids. Tetrahedron Lett. 2006, 47, 991–995; (f) Pravst, I.; Zupan, M.; Stavber, S. Solvent-free bromination of 1,3-diketones and β-keto esters with NBS. Green Chem. 2006, 8, 1001–1005; (g) Das, B.; Venkateswarlu, K.; Mahender, G.; Mahender, I. A simple and efficient method for α-bromination of carbonyl compounds using N-bromosuccinimide in the presence of silica- supported sodium hydrogen sulfate as a heterogeneous catalyst. Tetrahedron Lett. 2005, 46, 3041–3044; (h) Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T. A mild and efficient procedure for α-bromination of ketones using N-bromosuccinimide catalysed by ammonium acetate. Chem. Commun. 2004, 470–471; (i) Yang, D.; Yan, Y. L.; Lui, B. Mild α-halogenation reactions of 1,3-dicarbonyl compounds catalyzed by Lewis acids. J. Org. Chem. 2002, 67, 7429–7431; (j) Bertelsen, S.; Halland, N.; Bachmann, S.; Marigo, M.; Braunton, A.; Jørgensen, K. A. Organocatalytic asymmetric α-bromination of aldehydes and ketones. Chem. Commun. 2005, 4821–4823.
- 3 Jiang, Q.; Sheng, W.; Guo, C. Synthesis of phenacyl bromides via K2S2O8-mediated tandem hydroxybromination and oxidation of styrenes in water. Green Chem. 2013, 15, 2175–2179.
- 4(a) Smidt, J.; Hahner, W.; Jima, R.; Sedlmeier, J.; Sieber, R.; Rüttinger, R.; Kojer, K. Catalytic reactions of olefins on compounds of the platinum group. Angew. Chem. 1959, 71, 176–182; (b) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, A. Palladium chloride-catalyzed oxidation of olefins. Angew. Chem. 1962, 74, 93–102; Angew. Chem. Int. Ed. Engl. 1962, 1, 80–89.
- 5(a) Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. Metal-Free, Aerobic Dioxygenation of Alkenes Using Simple Hydroxamic Acid Derivatives. J. Am. Chem. Soc. 2011, 133, 13320–13322; (b) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Copper-Catalyzed Intramolecular Dehydrogenative Aminooxygenation: Direct Access to Formyl- Substituted Aromatic N-Heterocycles. Angew. Chem. Int. Ed. 2011, 50, 5678–5681; Angew. Chem. 2011, 123, 5796–5799; (c) Wang, Z.-Q.; Zhang, W.-W.; Gong, L.-B.; Tang, R.-Y.; Yang, X.-H.; Liu, Y.; Li, J.-H. Copper-Catalyzed Intramolecular Oxidative 6-exo-trig Cyclization of 1,6-Enynes with H2O and O2. Angew. Chem. Int. Ed. 2011, 50, 8968–8970; Angew. Chem. 2011, 123, 9130–9132; (d) Wei, W.; Ji, J. X. Catalytic and direct oxyphosphorylation of alkenes with dioxygen and H-phosphonates leading to β-ketophosphonates. Angew. Chem. Int. Ed. 2011, 50, 9097–9099; Angew. Chem. 2011, 123, 9263–9265; \ Su, Y.; Sun, X.; Wu, G.; Jiao, N. Catalyst-Controlled Highly Selective Coupling and Oxygenation of Olefins: A Direct Approach to Alcohols, Ketones, and Diketones. Angew. Chem. Int. Ed. 2013, 52, 9808–9811; Angew. Chem. 2013, 125, 9990–9993; (f) Li, H.; Shan, C.; Tung, C.-H.; Xu, Z. Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes. Chem. Sci. 2017, 8, 2610–2615; (g) Cheng, J.; Cheng, Y.; Xie, J.; Zhu, C. Photoredox Divergent 1,2-Difunctionalization of Alkenes with gem-Dibromides. Org. Lett. 2017, 19, 6452–6455; (h) Cui, H.; Wei, W.; Yang, D.; Zhang, Y.; Zhao, H.; Wang, L.; Wang, H. Visible-light-induced selective synthesis of sulfoxides from alkenes and thiols using air as the oxidant. Green Chem. 2017, 19, 3520–3524; (i) Wei, W.; Cui, H.; Yue, H.; Yang, D. Visible-light-enabled oxyazidation of alkenes leading to α-azidoketones in air. Green Chem. 2018, 20, 3197–3202.
- 6For selected reviews on photoredox catalysis: (a) Xuan, J.; Xiao, W. J. Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2012, 51, 6828–6838; (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363; (c) Angnes, R. A.; Li, Z.; Correia, C. R. D.; Hammond, G. B. Recent synthetic additions to the visible light photoredox catalysis toolbox. Org. Biomol. Chem. 2015, 13, 9152–9167; (d) Xuan, J.; Zhang, Z. G.; Xiao, W. J. Visible-Light-Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives. Angew. Chem. Int. Ed. 2015, 54, 15632–15641; (e) Luo, J.; Zhang, J. Donor-Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp3)-C(sp2) Cross-Coupling. ACS Catal. 2016, 6, 873–877; (f) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Visible light photoredox- controlled reactions of N-radicals and radical ions. Chem. Soc. Rev. 2016, 45, 2044–2056; (g) See a special Issue on “Photoredox Catalysis in Organic Chemistry” on Acc. Chem. Res. 2016, 49; (h) Sun, X.; Yu, S. Visible-Light-Promoted and Photoredox-Catalyzed Radical Addition to Triple Bonds. Synlett 2016, 27, 2659–2675; (i) Zhang, M.; Zhu, C.; Ye, L.-W. Recent Advances in Dual Visible Light Photoredox and Gold-Catalyzed Reactions. Synthesis 2017, 49, 1150–1157; (j) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 2018, 47, 654–667; (k) Cheng, X.; Hu, X.; Lu, Z. Visible-Light-Promoted Aerobic Homogenous Oxygenation Reactions. Chin. J. Org. Chem. 2017, 37, 251–266 (in Chinese); (l) Wang, C.; Lu, Z. Org. Chem. Front. 2015, 2, 179–190; (m) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Photoredox sheds new light on nickel catalysis: from carbon–carbon to carbon–heteroatom bond formation. Org. Chem. Front. 2016, 3, 522–526; (n) Sun, X.; Yu, S. Synthesis of Polysubstituted (Hetero)aromatic Compounds Using Visible-Light-Promoted Radical Triple Bond Insertions. Chin. J. Org. Chem. 2016, 36, 239–247 (in Chinese); (o) Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Visible Light Induced Cross-Coupling Hydrogen Evolution Reactions. Acta Chim. Sinica 2017, 75, 34–40; (p) Chen, Y.; Lu, L.-Q., Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Visible light-driven organic photochemical synthesis in China. Sci. China Chem. 2019, 62, 24–57.
- 7For radical type difunctionalization of alkenes, see: (a) Cao, M.-Y.; Ren, X.; Lu, Z. Olefin difunctionalizations via visible light photocatalysis. Tetrahedron Lett. 2015, 56, 3732–3742; (b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 2018, 47, 654–667; (c) Wu, X.; Wu, S.; Zhu, C. Radical-mediated difunctionalization of unactivated alkenes through distal migration of functional groups. Tetrahedron Lett. 2018, 59, 1328–1336; (d) Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Radical-Type Difunctionalization of Alkenes with CO2. Acta Chim. Sinica 2019, 77, 783–793.
- 8 Nobuta, T.; Hirashima, S.; Tada, N.; Miura, T.; Itoh, A. Facile Aerobic Photo-Oxidative Synthesis of Phenacyl Iodides and Bromides from Styrenes Using I2 or Aqueous HBr. Synlett 2010, 21, 2335–2339.
- 9(a) Ding, Y.; Zhang, W.; Li, H.; Meng, Y.; Zhang, T.; Chen, Q.-Y.; Zhu, C. Metal-free synthesis of ketones by visible-light induced aerobic oxidative radical addition of aryl hydrazines to alkenes. Green Chem. 2017, 19, 2941–2944; (b) Ding, Y.; Li, H.; Meng, Y.; Zhang, T.; Li, J.; Chen, Q.-Y.; Zhu, C. Direct synthesis of hydrazones by visible light mediated aerobic oxidative cleavage of the C=C bond. Org. Chem. Front. 2017, 4, 1611–1614; (c) Wu, J.; Zhang, Y.; Gong, X.; Meng, Y.; Zhu, C. Visible-light promoted aerobic difunctionalization of alkenes with sulfonyl hydrazides for the synthesis of β-keto/hydroxyl sulfones. Org. Biomol. Chem. 2019, 17, 3507–3513.
- 10(a) Marcyk, P. T.; Cook, S. P. Synthesis of Tetrahydroisoquinolines through an Iron-Catalyzed Cascade: Tandem Alcohol Substitution and Hydroamination. Org. Lett. 2019, 21, 6741−6744; (b) Marcyk, P. T.; Cook, S. P. Iron-Catalyzed Hydroamination and Hydroetherification of Unactivated Alkenes. Org. Lett. 2019, 21, 1547–1550; (c) Wang, P.; Deng, L. Recent Advances in Iron-Catalyzed C—H Bond Amination via Iron Imido Intermediate. Chin. J. Chem. 2018, 36, 1222–1240; (d) Cheng, B.; Liu, W.; Lu, Z. Iron-Catalyzed Highly Enantioselective Hydrosilylation of Unactivated Terminal Alkenes. J. Am. Chem. Soc. 2018, 140, 5014–5017; (e) Wei, D.; Darcel, C. Iron Catalysis in Reduction and Hydrometalation Reactions. Chem. Rev. 2019, 119, 2550–2610.
- 11(a) Gregory, N. W. The Ultraviolet-Visible Absorption Spectrum of Vapors Generated in the Iron-Bromine System. Molecular Complexes and Vaporization Thermodynamics. J. Phys. Chem. 1977, 81, 1857–1860; (b) Westre, T. E.; Kennepohl, P.; DeWitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314.