Simulating the Dehydration Process by Adsorption and Diffusion of H2O and CH4 on the Silica
Mohammad Teimouri
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Azadi square, Mashhad, 9177948974 Iran
Search for more papers by this authorCorresponding Author
Ali Nakhaei Pour
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Azadi square, Mashhad, 9177948974 Iran
Email: [email protected]
Search for more papers by this authorSaeedeh Soheili
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Azadi square, Mashhad, 9177948974 Iran
Search for more papers by this authorMohammad Teimouri
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Azadi square, Mashhad, 9177948974 Iran
Search for more papers by this authorCorresponding Author
Ali Nakhaei Pour
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Azadi square, Mashhad, 9177948974 Iran
Email: [email protected]
Search for more papers by this authorSaeedeh Soheili
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Azadi square, Mashhad, 9177948974 Iran
Search for more papers by this authorAbstract
The study of the adsorption behavior of silica in removing water vapor using computational chemistry methods provides better views on understanding the dehydration process. In pure adsorption and diffusion, the smaller kinetic diameter of water is the most important factor in decreasing the adsorption and increasing the diffusion of water vapor in silica pores. Moreover, in the mixed-use guest molecules, the hydrogen bond of the water vapor molecule and siloxane and the interaction between methane and water are effective factors in separating water vapor from methane in the process of dehydration of natural gas. Computational studies using Monte Carlo and molecular dynamics simulation showed that the highest amounts of adsorption calculated in pure and binary mixture adsorption are related to methane and water vapor, respectively. Furthermore, water vapor in a pure diffusion is more than methane, and in binary mixture diffusion, methane vapor shows a higher diffusion coefficient.
Supporting Information
Filename | Description |
---|---|
ceat70081-sup-0001-SuppMat.docx433.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Soheili, A. Nakaei Pour, Phys. Chem. Chem. Phys. 2024, 26 (6), 5226–5236.
- 2S. Soheili, A. Nakaei Pour, A. Mohammadi, Microporous Mesoporous Mater. 2021, 317, 111003.
- 3M. Netusil, P. Ditl, in Natural Gas-Extraction to End Use, IntechOpen, London 2012.
- 4V. J. Aimikhe, C. W. Okologume, in Advances in Natural Gas: Formation, Processing, and Applications, Elsevier, Amsterdam 2024, 53–75.
10.1016/B978-0-443-19221-0.00011-9 Google Scholar
- 5S. S. M. Rohani, Natural gas dehydration using silicagel: fabrication of dehydration unit, UMP 2009.
- 6K. M. Santos, T. R. Menezes, M. R. Oliveira, T. S. Silva, K. S. Santos, V. A. Barros, D. C. Melo, A. L. Ramos, C. C. Santana, E. Franceschi, Sep. Purif. Technol. 2021, 276, 119409.
- 7J. Abdulsalam, J. Mulopo, M. K. Amosa, S. Bada, R. Falcon, B. O. Oboirien, Sep. Sci. Technol. 2019, 54 (15), 2461–2497.
- 8H. A. Farag, M. M. Ezzat, H. Amer, A. W. Nashed, Alexandria Eng. J. 2011, 50 (4), 431–439.
- 9M. W. Ackley, S. U. Rege, H. Saxena, Microporous Mesoporous Mater. 2003, 61 (1–3), 25–42.
- 10D. Ferreira, R. Magalhaes, P. Taveira, A. Mendes, Ind. Eng. Chem. Res. 2011, 50 (17), 10201–10210.
- 11S. Deng, Encyclopedia of Chemical Processing, Routledge, Abingdon-on-Thames 2006, 2825–2845.
- 12P. Pullumbi, F. Brandani, S. Brandani, Curr. Opin. Chem. Eng. 2019, 24, 131–142.
- 13S. Chen, Y. Fu, Y. Huang, Z. Tao, M. Zhu, Appl. Energy 2016, 179, 329–337.
- 14D. P. Stefanescu, Revista de Chimie 2017, 68 (9), 2117–2121.
- 15A. Zhokh, Powder Technol. 2023, 417, 118244.
- 16M. Feldman, P. Desrochers, Ind. Innov. 2003, 10 (1), 5–24.
10.1080/1366271032000068078 Google Scholar
- 17F. Canencia, M. Darder, P. Aranda, F. M. Fernandes, R. F. Gouveia, E. Ruiz-Hitzky, J. Mater. Sci. 2017, 52, 11269–11281.
- 18W. Shi, W. Guan, C. Lei, G. Yu, Angew. Chem. 2022, 134 (43), e202211267.
- 19J. Li, J. Cai, X. Liu, Y. Guo, H. Sui, L. He, Ind. Eng. Chem. Res. 2023, 62 (48), 20833–20843.
- 20A. R. Rezk, R. K. Al-Dadah, Appl. Energy 2012, 89 (1), 142–149.
- 21B. Gao, F. An, K. Liu, Appl. Surf. Sci. 2006, 253 (4), 1946–1952.
- 22A. Rezk, G. G. Ilis, H. Demir, Therm. Sci. Eng. Prog. 2022, 34, 101429.
- 23A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert, P. Ugliengo, Chem. Rev. 2013, 113 (6), 4216–4313.
- 24R. P. Sah, B. Choudhury, R. K. Das, Renewable Sustainable Energy Rev. 2015, 45, 123–134.
- 25H. T. Chua, K. C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, B. Saha, Int. J. Refrig. 1999, 22 (3), 194–204.
- 26T. Hocker, A. Rajendran, M. Mazzotti, Langmuir 2003, 19 (4), 1254–1267.
- 27B. Gouze, J. Cambedouzou, S. Parrès-Maynadié, D. Rébiscoul, Microporous Mesoporous Mater. 2014, 183, 168–176.
- 28S. Maaz, M. Rose, R. Palkovits, Microporous Mesoporous Mater. 2016, 220, 183–187.
- 29K. G. Wynnyk, B. Hojjati, R. A. Marriott, J. Chem. Eng. Data 2019, 64 (7), 3156–3163.
- 30B. Siboulet, B. Coasne, J.-F. Dufrêche, P. Turq, J. Phys. Chem. B 2011, 115 (24), 7881–7886.
- 31M. Rovere, P. Gallo, Eur. Phys. J. E:Soft Matter Biol. Phys. 2003, 12, 77–81.
- 32K. Shirono, H. Daiguji, J. Phys. Chem. C 2007, 111 (22), 7938–7946.
- 33R. H. Worden, M. W. French, E. Mariani, Geology 2012, 40 (2), 179–182.
- 34J. Y. Chng, D. S. Sholl, ACS Appl. Mater. Interfaces 2023, 15 (31), 37828–37836.
- 35S. E. Fioressi, R. Binning Jr, D. E. Bacelo, Chem. Phys. Lett. 2008, 454 (4–6), 269–273.
- 36G.-M. Li, J. H. Reibenspies, A. Derecskei-Kovacs, R. A. Zingaro, Polyhedron 1999, 18 (26), 3391–3399.
- 37Z. Keyvanloo, A. N. Pour, F. Moosavi, Microporous Mesoporous Mater. 2022, 333, 111723.
- 38Z. Bonakchi, A. Nakhaei Pour, S. Soheili, J. Iran. Chem. Soc. 2022, 19 (8), 3649–3657.
- 39H. Swenson, N. P. Stadie, Langmuir 2019, 35 (16), 5409–5426.
- 40Z. Taheri, A. Nakhaei Pour, J. Mol. Model. 2021, 27, 1–8.
- 41Z. Yang, L. Liu, T. Gui, R. Zhou, X. Chen, Chin. J. Chem. Phys. 2013, 26 (5), 553–557.
- 42J. F. Fatriansyah, D. Dhaneswara, M. H. Abdurrahman, F. R. Kuskendrianto, M. B. Yusuf, IOP Conf. Ser.: Mater. Sci. Eng. 2019, 478, 012034.
- 43S. E. Kentish, C. A. Scholes, G. W. Stevens, Recent Pat. Chem. Eng. 2008, 1 (1), 52–66.
10.2174/2211334710801010052 Google Scholar
- 44M. Abdirakhimov, M. H. Al-Rashed, J. Wójcik, Energies 2022, 15 (15), 5391.
- 45Y. Zhang, K. Chen, C. Lv, T. Wu, Y. Wen, H. He, S. Yu, L. A. Wang, Water, Air, Soil Pollut. 2021, 232, 1–11.
- 46M. Chen, Y. Cheng, H. Li, L. Wang, K. Jin, J. Dong, J. Nat. Gas Sci. Eng. 2018, 55, 312–320.
- 47Z. Zhu, Q. Zheng, Appl. Therm. Eng. 2016, 108, 605–613.
- 48S. Soheili, A. Nakaei Pour, A. Mohammadi, D. Y. Murzin, J. Mol. Graphics Modell. 2023, 124, 108555.
- 49M. Jorge, N. Lamia, A. E. Rodrigues, Colloids Surf. A 2010, 357 (1–3), 27–34.
- 50Y. Sun, L. Wang, R. Wang, S. Zheng, X. Liao, Z. Zhu, Y. Zhao, Fuel 2022, 330, 125715.
- 51H. Yang, W. Bi, Y. Zhang, J. Yu, J. Yan, D. Lei, Z. Ma, J. Environ. Chem. Eng. 2021, 9 (6), 106294.
- 52Z. Wang, C. Hao, X. Wang, G. Wang, G. Ni, Y. Cheng, Fuel, 2023, 351, 128910.
- 53O. Esen, A. Fişne, Rock Mech. Rock Eng. 2024, 57 (8), 6355–6375.
- 54S. Soheili, A. Nakaei Pour, RSC Adv. 2025, 15 (21), 16312–16322.
- 55C. A. Grande, D. G. Morence, A. M. Bouzga, K. A. Andreassen, Ind. Eng. Chem. Res. 2020, 59 (21), 10142–10149.
- 56Y. Yuan, H. Zhang, F. Yang, N. Zhang, X. Cao, Renewable Sustainable Energy Rev. 2016, 54, 761–776.
- 57B. Raghavendra, E. Arunan, Chem. Phys. Lett. 2008, 467 (1–3), 37–40.
- 58Y. Hasegawa, C. Abe, Membranes 2021, 11 (6), 392.
- 59H. Yang, N. Kang, X. Chen, Y. Liu, Energy 2023, 284, 129317.
- 60Z.-G. Zhang, S.-G. Cao, Y. Li, P. Guo, H. Yang, T. Yang, Adsorpt. Sci. Technol. 2018, 36 (9–10), 1648–1668.
- 61K. Kamiya, A. Oka, H. Nasu, T. Hashimoto, J. Sol–Gel Sci. Technol. 2000, 19, 495–499.
- 62S. Saliba, P. Ruch, W. Volksen, T. P. Magbitang, G. Dubois, B. Michel, Microporous Mesoporous Mater. 2016, 226, 221–228.
- 63Y. Ma, A. S. Foster, R. M. Nieminen, J. Chem. Phys. 2005, 122, 144709.
- 64J. Z. Yang, Q. L. Liu, H. T. Wang, J. Membr. Sci. 2007, 291 (1–2), 1–9.
- 65C. Li, J. Zhu, M. Zhou, S. Zhang, X. He, Materials 2019, 12 (11), 1782.