Biosynthesis of Metal and Metal Oxide Nanoparticles
Jaison Jeevanandam
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University CDT 250, 98009, Miri, Sarawak, Malaysia.
Search for more papers by this authorCorresponding Author
Yen San Chan
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University CDT 250, 98009, Miri, Sarawak, Malaysia.
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University CDT 250, 98009, Miri, Sarawak, Malaysia.Search for more papers by this authorMichael K. Danquah
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University CDT 250, 98009, Miri, Sarawak, Malaysia.
Search for more papers by this authorJaison Jeevanandam
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University CDT 250, 98009, Miri, Sarawak, Malaysia.
Search for more papers by this authorCorresponding Author
Yen San Chan
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University CDT 250, 98009, Miri, Sarawak, Malaysia.
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University CDT 250, 98009, Miri, Sarawak, Malaysia.Search for more papers by this authorMichael K. Danquah
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University CDT 250, 98009, Miri, Sarawak, Malaysia.
Search for more papers by this authorAbstract
Bioresource-based green synthesis of nanoparticles has gained significant interest as an emerging technology to reduce the toxicity of nanoparticles commonly associated with conventional chemical synthesis approaches. Studies on green synthesis of metal nanoparticles have been carried out with various biological materials including from bacteria, fungi, and plant extracts. Plant extracts in particular have been extensively used for the synthesis of metal and metal oxide nanoparticles, and this is due to the presence of essential phytochemicals in plant extracts especially from the leaves. Leaf extract contains various types of phytochemicals such as terpenoids, flavonoids, ketones, aldehydes, amides, and carboxylic acids, which play a major role in formulating and enhancing the bioactivity of the nanoparticles. This article discusses flavonoids as an essential phytochemical for the formation of metal and metal oxide nanoparticles and enhancement of their bio-functionality and compatibility. In addition, bioprocess developments for the synthesis of metal as well as metal oxide nanoparticles from various biological materials are discussed.
References
- 1 Nanoscale Science and Technology (Eds: R. W. Kelsall), John Wiley & Sons, Hoboken 2005.
- 2 G. Oskam, J. Sol-Gel Sci. Technol. 2006, 37 (3), 161–164.
- 3 M. R. Hofmann et al., Chem. Rev. 1995, 95 (1), 69–96.
- 4 J. Livage, M. Henry, C. Sanchez, Prog. Solid State Chem. 1988, 18 (4), 259–341.
- 5 S. Laurent et al., Chem. Rev. 2008, 108 (6), 2064–2110.
- 6 J.-P. Jolivet et al., Metal Oxide Chemistry and Synthesis: From Solution to Solid State, John Wiley & Sons, New York 2000.
- 7 G. Cao, Synthesis, Properties and Applications, Imperial College Press, London 2004.
- 8 P. Malik et al., J. Nanopart. 2014, 2014, 1–14.
- 9 E. A. Terenteva et al., Spectrochim. Acta, Part A 2015, 151, 89–95.
- 10 V. V. Makarov et al., Acta Naturae 2014, 6 (1), 35–44.
- 11 S. P. Fernández et al., Eur. J. Pharmacol. 2006, 539 (3), 168–176.
- 12 K. E. Heim, A. R. Tagliaferro, D. J. Bobilya, J. Nutr. Biochem. 2002, 13 (10), 572–584.
- 13 P. C. H. Hollman, M. Katan, Food Chem.Toxicol. 1999, 37 (9), 937–942.
- 14 T. T. Cushnie, A. J. Lamb, Int. J. Antimicrob. Agents 2005, 26 (5), 343–356.
- 15 P. Houdy, M. Lahmani, C. Dupas, Nanoscience: Nanotechnologies and Nanophysics, 1 ed., Springer-Verlag, Heidelberg 2007.
- 16 T. Tsuzuki, P. G. McCormick, J. Mater. Sci. 2004, 39 (16–17), 5143–5146.
- 17 Nanoscale Science and Technology (Eds: R. W. Kelsall), John Wiley & Sons, Hoboken 2005.
- 18
G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, London 2004.
10.1142/p305 Google Scholar
- 19 T. P. Yadav, R. M. Yadav, D. P. Singh, Nanosci. Nanotechnol. 2012, 2 (3), 22–48.
- 20 D. Nesheva et al., J. Phys. Chem. Solids 2007, 68 (5), 675–680.
- 21
C. Dupas, M. Lahmani, Nanoscience: Nanotechnologies and Nanophysics, Springer Science & Business Media, Berlin 2007.
10.1007/978-3-540-28617-2 Google Scholar
- 22 Y. Shi, Acc. Chem. Res. 2015, 48 (2), 163–173.
- 23 Y. Yan et al., Catal. Sci. Technol. 2015, 5 (2), 772–785.
- 24 L. L. Hench, J. K. West, Chem. Rev. 1990, 90 (1), 33–72.
- 25 H. Duan, D. Wang, Y. Li, Chem. Soc. Rev. 2015, 44 (16), 5778–5792.
- 26 U. Mohanty, J. Appl. Electrochem. 2011, 41 (3), 257–270.
- 27 A. Asatekin et al., Mater. Today 2010, 13 (5), 26–33.
- 28 J.-H. Park, T. Sudarshan, Chemical Vapor Deposition, Vol. 2, ASM international, Novelty, OH 2001.
- 29 M. S. Mastuli et al., Nanoscale Res. Lett. 2014, 9 (1), 1–9.
- 30 K. Nithya et al., Int. J. Chem.Tech. Res. 2014, 6 (3), 2220–2222.
- 31 N. N. Long et al., J. Phys.: Conf. Ser. 2009, 187 (1), 012026.
- 32 K. M. A. El-Nour et al., Arabian J. Chem. 2010, 3 (3), 135–140.
- 33
G. Kartopu, O. Yalçın, Fabrication and Applications of Metal Nanowire Arrays Electrodeposited in Ordered Porous Templates, INTECH Open Access Publisher, Rijeka 2010.
10.5772/39481 Google Scholar
- 34 B. Marquardt et al., Nanotechnology 2008, 19 (40), 405601–405606.
- 35 J. Descarpentries et al., Micro Nano Lett. 2012, 7 (12), 1241–1245.
- 36 O. V. Kharissova et al., Trends Biotechnol. 2013, 31 (4), 240–248.
- 37 S. Iravani et al., Res. Pharm.Sci. 2014, 9 (6), 385–406.
- 38
N. L. Pacioni et al., in Silver Nanoparticle Applications, Springer, Heidelberg 2015, 13–46.
10.1007/978-3-319-11262-6_2 Google Scholar
- 39 T. Wang et al., RSC Adv. 2015, 5 (60), 48992–48996.
- 40 G. Duan et al., Adv. Eng. Mater. 2015, 17 (3), 341–348.
- 41 X. Peng et al., Nature 2000, 404 (6773), 59–61.
- 42 N. H. H. Abu Bakar, J. Ismail, M. Abu Bakar, Mater. Chem. Phys. 2007, 104 (2–3), 276–283.
- 43 A. Kumar, J. Kumar, J. Phys. Chem. Solids 2008, 69 (11), 2764–2772.
- 44
S. Bakardjieva et al., Microsc. Microanal. 2004, 10 (S02), 476–477.
10.1017/S1431927604881479 Google Scholar
- 45 J. Zeng et al., Nano Lett. 2009, 10 (1), 30–35.
- 46 B. D. Chithrani, W. C. Chan, Nano Lett. 2007, 7 (6), 1542–1550.
- 47 S. M. Hussain et al., Toxicol. In Vitro 2005, 19 (7), 975–983.
- 48 Z. Li et al., Adv. Mater. 2005, 17 (8), 1001–1005.
- 49 S. Sun et al., J. Am. Chem. Soc. 2004, 126 (1), 273–279.
- 50 X. Lu et al., J. Phys. Chem. B 2008, 112 (46), 14390–14394.
- 51 L. Wu, J. Zhang, W. Watanabe, Adv. Drug Delivery Rev. 2011, 63 (6), 456–469.
- 52 S. D. Perrault, W. C. Chan, J. Am. Chem. Soc. 2009, 131 (47), 17042–17043.
- 53 K. C. Song et al., Korean J. Chem. Eng. 2009, 26 (1), 153–155.
- 54 C. Uboldi et al., Part. Fibre Toxicol. 2009, 6 (1), 1–12.
- 55 A. M. Alkilany, C. J. Murphy, J. Nanopart. Res. 2010, 12 (7), 2313–2333.
- 56 C. Singh et al., Adv. Mater. Lett. 2012, 3 (4), 279–285.
- 57 A. M. Alkilany et al., Small 2009, 5 (6), 701–708.
- 58 M. Gericke, A. Pinches, Gold Bull. 2006, 39 (1), 22–28.
- 59
S. Iravani, Int. Scholarly Res. Notices 2014, 2014, 1–18.
10.1155/2014/359316 Google Scholar
- 60 K. Kalishwaralal et al., Mater. Lett. 2008, 62 (29), 4411–4413.
- 61 S. Priyadarshini et al., Colloids Surf., B 2013, 102, 232–237.
- 62 S. Sunkar, C. V. Nachiyar, Asian Pac. J. Trop. Biomed. 2012, 2 (12), 953–959.
- 63 S. Shivaji, S. Madhu, S. Singh, Process Biochem. 2011, 46 (9), 1800–1807.
- 64 H. Korbekandi, S. Iravani, S. Abbasi, J. Chem.Technol. Biotechnol. 2012, 87 (7), 932–937.
- 65 D. R. Lovley, D. E. Holmes, K. P. Nevin, in Advances in Microbial Physiology, Academic Press, Cambridge, MA 2004, 219–286.
- 66 A. R. Shahverdi et al., Process Biochem. 2007, 42 (5), 919–923.
- 67 F. U. Mouxing et al., Chin. J. Chem. Eng. 2006, 14 (1), 114–117.
- 68 T. J. Beveridge, R. G. Murray, J. Bacteriol. 1980, 141 (2), 876–887.
- 69 G. Southam, T. J. Beveridge, Geochim. Cosmochim. Acta 1994, 58 (20), 4527–4530.
- 70 L. Wen et al., J. Nanopart. Res. 2009, 11 (2), 279–288.
- 71 Y. Konishi et al., Electrochim. Acta 2007, 53 (1), 186–192.
- 72 L. Du et al., Electrochem. Commun. 2007, 9 (5), 1165–1170.
- 73 K. Deplanche, L. E. Macaskie, Biotechnol. Bioeng. 2008, 99 (5), 1055–1064.
- 74 S. He et al., Mater. Lett. 2007, 61 (18), 3984–3987.
- 75 M. F. Lengke, M. E. Fleet, G. Southam, Langmuir 2006, 22 (6), 2780–2787.
- 76 M. Pósfai et al., Earth Planet. Sci. Lett. 2006, 249 (3), 444–455.
- 77 T. Klaus-Joerger et al., Trends Biotechnol. 2001, 19 (1), 15–20.
- 78 L. W. Yeary et al., IEEE Trans. Magn. 2005, 41 (12), 4384–4389.
- 79 Y. Roh et al., Solid State Commun. 2001, 118 (10), 529–534.
- 80 A. P. Philipse, D. Maas, Langmuir 2002, 18 (25), 9977–9984.
- 81 D. R. Lovley, E. J. P. Phillips, D. J. Lonergan, Appl. Environ. Microbiol. 1989, 55 (3), 700–706.
- 82 D. R. Lovley et al., Appl. Environ. Microbiol. 1995, 61 (6), 2132–2138.
- 83 E. E. Roden, D. R. Lovley, Appl. Environ. Microbiol. 1993, 59 (3), 734–742.
- 84 P. Yong et al., Biotechnol. Bioeng. 2002, 80 (4), 369–379.
- 85 J. R. Lloyd, P. Yong, L. E. Macaskie, Appl. Environ. Microbiol. 1998, 64 (11), 4607–4609.
- 86 W. D. Windt, P. Aelterman, W. Verstraete, Environ. Microbiol. 2005, 7 (3), 314–325.
- 87 Y. Konishi et al., J. Biotechnol. 2007, 128 (3), 648–653.
- 88 K. B. Narayanan, N. Sakthivel, Adv. Colloid Interface Sci. 2010, 156 (1), 1–13.
- 89 W. J. Hunter, D. K. Manter, Curr. Microbial. 2008, 57 (1), 83–88.
- 90
Y. Vinod et al., Biotechnology (Faisalabad, Pak) 2008, 7 (2), 299–304.
10.3923/biotech.2008.299.304 Google Scholar
- 91 R. S. Oremland et al., Appl. Environ. Microbiol. 2004, 70 (1), 52–60.
- 92 S. M. Baesman et al., Appl. Environ. Microbiol. 2007, 73 (7), 2135–2143.
- 93
C. Noguera, Physics and Chemistry at Oxide Surfaces, Cambridge University Press, Cambridge 1996.
10.1017/CBO9780511524301 Google Scholar
- 94 H. H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier, Amsterdam 1989.
- 95 P. W. Schindler, W. Stumm, in Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface, John Wiley & Sons, New York 1987, 83–110.
- 96 M. Fernández-García, J. A. Rodriguez, in Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Hoboken 2007.
- 97 L. D'Souza, R. Richards, in Synthesis, Properties, and Applications of Oxide Nanomaterials (Eds: J. A. Rodríguez), John Wiley & Sons, Hoboken 2007, 81–117.
- 98 K. S. Suslick et al., Nature 1991, 353 (6343), 414–416.
- 99 L. V. Interrante, M. J. Hampden-Smith, in Chemistry of Advanced Materials: An Overview (Eds: Leonard V. Interrante), Wiley-VCH, Weinheim 1997, 592.
- 100 V. Uskoković, M. Drofenik, Surf. Rev. Lett. 2005, 12 (02), 239–277.
- 101 B. Gersten, Chemfiles 2005, 5, 11–12.
- 102 O. V. Kharissova et al., Trends Biotechnol. 2013, 31 (4), 240–248.
- 103 S. Mann, R. B. Frankel, R. P. Blakemore, Nature 1984, 310 (5976), 405–407.
- 104 D. P. Cunningham, L. L. Lundie, Appl. Environ. Microbiol. 1993, 59 (1), 7–14.
- 105 M. J. Marshall et al., PLoS Biol. 2006, 4 (8), e268.
- 106 J. D. Holmes et al., Arch. Microbiol. 1995, 163 (2), 143–147.
- 107 H. J. Bai et al., Colloids Surf., B 2009, 70 (1), 142–146.
- 108 R. Y. Sweeney et al., Chem. Biol. 2004, 11 (11), 1553–1559.
- 109 M. F. Lengke et al., Environ. Sci. Technol. 2006, 40 (20), 6304–6309.
- 110 H.-J. Bai, Z.-M. Zhang, Mater. Lett. 2009, 63 (9), 764–766.
- 111 J. R. Stephen, S. J. Macnaughtont, Opinion Biotechnol. 1999, 10 (3), 230–233.
- 112 K. N. Thakkar, S. S. Mhatre, R. Y. Parikh, Nanomed.: Nanotechnol. Biol. Med. 2010, 6 (2), 257–262.
- 113 K. B. Narayanan, N. Sakthivel, Adv. Colloid Interface Sci. 2010, 156 (1–2), 1–13.
- 114 N. I. Hulkoti, T. C. Taranath, Colloids Surf., B 2014, 121, 474–483.
- 115 P. Mohanpuria, N. K. Rana, S. K. Yadav, J. Nanopart. Res. 2008, 10 (3), 507–517.
- 116 S. Senapati et al., Small 2005, 1 (5), 517–520.
- 117 A. R. Binupriya, M. Sathishkumar, S. I. Yun, Colloids Surf., B 2010, 79 (2), 531–534.
- 118 A. Ahmad et al., J. Biomed. Nanotechnol. 2005, 1 (1), 47–53.
- 119 S. S. Shankar et al., J. Mater. Chem. 2003, 13 (7), 1822–1826.
- 120 S. Senapati et al., Indian J. Phys., A 2004, 78 (1), 101–105.
- 121 K. C. Bhainsa, S. F. D'Souza, Colloids Surf., B 2006, 47 (2), 160–164.
- 122 N. Vigneshwaran et al., Colloids Surf., B 2006, 53 (1), 55–59.
- 123 N. Vigneshwaran et al., Mater. Lett. 2007, 61 (6), 1413–1418.
- 124 A. K. Gade et al., J. Biobased Mater. Bioenergy 2008, 2 (3), 243–247.
- 125 S. Basavaraja et al., Mater. Res. Bull. 2008, 43 (5), 1164–1170.
- 126 D. Philip, Spectrochim. Acta, Part A 2009, 73 (2), 374–381.
- 127 D. S. Balaji et al., Colloids Surf., B 2009, 68 (1), 88–92.
- 128 R. Sanghi, P. Verma, Bioresour. Technol. 2009, 100 (1), 501–504.
- 129 A. Ingle et al., J. Nanopart. Res. 2009, 11 (8), 2079–2085.
- 130 N. S. Shaligram et al., Process Biochem. 2009, 44 (8), 939–943.
- 131 K. Kathiresan et al., Colloids Surf., B 2009, 71 (1), 133–137.
- 132 S. S. Birla et al., Lett. Appl. Microbiol. 2009, 48 (2), 173–179.
- 133 M. Gajbhiye et al., Nanomed.: Nanotechnol. Biol. Med. 2009, 5 (4), 382–386.
- 134 A. M. Fayaz et al., Nanomed.: Nanotechnol. Biol. Med. 2010, 6 (1), 103–109.
- 135 B. K. Ravindra, A. H. Rajasab, Int. J. Pharm. Pharm. Sci. 2014, 6, 372–376.
- 136 R. Raliya, P. Biswas, J. C. Tarafdar, Biotechnol. Rep. 2015, 5, 22–26.
- 137 G. Baskar et al., Asian J. Pharm. Technol. 2013, 3 (4), 142–146.
- 138 V. Bansal et al., J. Am. Chem. Soc. 2006, 128 (36), 11958–11963.
- 139 I. Uddin et al., J. Nanosci. Nanotechnol. 2008, 8 (8), 3909–3913.
- 140 V. Bansal et al., J. Mater. Chem. 2005, 15 (26), 2583–2589.
- 141 A. Bharde et al., Small 2006, 2 (1), 135–141.
- 142 S. A. Kumar et al., J. Biomed. Nanotechnol. 2007, 3 (2), 190–194.
- 143 V. Bansal et al., J. Mater. Chem 2004, 14 (22), 3303–3305.
- 144 A. Ahmad et al., J. Am. Chem. Soc. 2002, 124 (41), 12108–12109.
- 145 R. Sanghi, P. Verma, Chem. Eng. J. 2009, 155 (3), 886–891.
- 146 B. Volesky, Z. R. Holan, Biotechnol. Progr. 1995, 11 (3), 235–250.
- 147 P. Mukherjee et al., Nano Lett. 2001, 1 (10), 515–519.
- 148 A. Ahmad et al., Colloids Surf., B 2003, 28 (4), 313–318.
- 149 S. S. Shankar et al., J. Colloid Interface Sci. 2004, 275 (2), 496–502.
- 150 P. Mukherjee et al., Nano Lett. 2001, 1 (10), 515–519.
- 151 C. Krishnaraj et al., Colloids Surf., B 2010, 76 (1), 50–56.
- 152 S. P. Chandran et al., Biotechnol. Progr. 2006, 22 (2), 577–583.
- 153 J. Kesharwani et al., J. Bionanosci. 2009, 3 (1), 39–44.
- 154 T. Santhoshkumar et al., Parasitol. Res. 2011, 108 (3), 693–702.
- 155 H. Bar et al., Colloids Surf., A 2009, 339 (1), 134–139.
- 156 K. Mallikarjuna et al., Dig. J. Nanomater. Biostruct. 2011, 6 (1), 181–186.
- 157 C. Udayasoorian, R. V. Kumar, M. Jayabalakrishnan, Dig. J. Nanomater. Biostruct. 2011, 6 (1), 279–283.
- 158 A. K. Mittal, A. Kaler, U. C. Banerjee, Nano Biomed. Eng. 2012, 4 (3), 118–124.
- 159 J. L. Gardea-Torresdey et al., Nano Lett. 2002, 2 (4), 397–401.
- 160 J. Y. Song, H.-K. Jang, B. S. Kim, Process Biochem 2009, 44 (10), 1133–1138.
- 161 J. Huang et al., Nanotechnology 2007, 18 (10), 105101–105111.
- 162 P. Elia et al., Int. J. Nanomed. 2014, 9, 4007–4021.
- 163 R. Bali et al., in ICONN '06. Int. Conf. on Nanoscience and Nanotechnology, IEEE, New York 2006.
- 164 X. Yang et al., J. Nanopart. Res. 2010, 12 (5), 1589–1598.
- 165 S. Joglekar et al., Mater. Lett. 2011, 65 (19), 3170–3172.
- 166 M. Herlekar, S. Barve, R. Kumar, J. Nanopart. 2014, 2014, 1–9.
- 167 G. E. Hoag et al., J. Mater. Chem. 2009, 19 (45), 8671–8677.
- 168 T. Shahwan et al., Chem. Eng. J. 2011, 172 (1), 258–266.
- 169 Y. Kuang et al., J. Colloid Interface Sci. 2013, 410, 67–73.
- 170 E. C. Njagi et al., Langmuir 2010, 27 (1), 264–271.
- 171 S. Venkateswarlu et al., Mater. Lett. 2013, 100, 241–244.
- 172 S. Narayanan et al., ACS Appl. Mater. Interfaces 2011, 4 (1), 251–260.
- 173 S. Machado et al., Sci Total Environ 2013, 461, 323–329.
- 174 S. Thakur, N. Karak, Mater. Chem. Phys. 2014, 144 (3), 425–432.
- 175 V. Madhavi et al., Spectrochim. Acta, Part A 2013, 116, 17–25.
- 176 Z. Wang, ACS Sustainable Chem. Eng. 2013, 1 (12), 1551–1554.
- 177 A. Rao et al., J. Contam. Hydrol. 2013, 146, 63–73.
- 178 S. K. Daniel et al., J. Nanopart. Res. 2013, 15 (1), 1–10.
- 179 M. Senthil, C. Ramesh, Dig. J. Nanomater. Biostruct. 2012, 7 (4), 1655–1661.
- 180 K. M. Kumar et al., Spectrochim. Acta, Part A 2013, 102, 128–133.
- 181 Z. Wang, C. Fang, M. Megharaj, ACS Sustainable Chem. Eng. 2014, 2 (4), 1022–1025.
- 182
P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford 2000.
10.1093/oso/9780198506980.001.0001 Google Scholar
- 183 J. H. Clark, D. J. Macquarrie, Handbook of Green Chemistry and Technology, John Wiley & Sons, Hoboken 2008.
- 184 D. Gnanasangeetha, D. SaralaThambavani, J. Chem. Biol. Phys. Sci. 2013, 4 (1), 238–246.
- 185 R. S. Devi, R. Gayathri, Int. J. Curr. Eng. Technol. 2014, 4 (4), 2444–2446.
- 186 S. Senthilkumar, T. Sivakumar, Int. J. Pharm. Pharm. Sci. 2014, 6, 461–465.
- 187 S. Gunalan, R. Sivaraj, V. Rajendran, Prog. Nat. Sci.: Mater. Int. 2012, 22 (6), 693–700.
- 188 M. Hudlikar et al., Mater. Lett. 2012, 75, 196–199.
- 189 V. C. Shilpa Hiremath, M. A. Lourdu Antonyraj, M. N. Chandraprabha, S. Seemashri, Int. Rev. Appl. Biotechnol. Biochem. 2014, 2 (1), 11–17.
- 190 G. Rajakumar et al., Mater. Lett. 2012, 68, 115–117.
- 191 A. Awwad, B. Albiss, N. Salem, SMU Med. J. 2015, 2 (1), 91–100.
- 192 S. Gunalan, R. Sivaraj, R. Venckatesh, Spectrochim. Acta, Part A 2012, 97, 1140–1144.
- 193 M. Dubey, S. Bhadauria, B. Kushwah, Dig. J. Nanomater. Biostruct. 2009, 4 (3), 537–543.
- 194 S. Iravani, Green Chem. 2011, 13 (10), 2638–2650.
- 195 P. Rajasekharreddy, P. U. Rani, B. Sreedhar, J. Nanopart. Res. 2010, 12 (5), 1711–1721.
- 196 N. Durán et al., Appl. Microbial. Biotechnol. 2011, 90 (5), 1609–1624.
- 197 R. K. Das, B. B. Borthakur, U. Bora, Mater. Lett. 2010, 64 (13), 1445–1447.
- 198 N. Ahmad et al., Colloids Surf., B 2010, 81 (1), 81–86.
- 199 S. S. Shankar, A. Ahmad, M. Sastry, Biotechnol. Progr. 2003, 19 (6), 1627–1631.
- 200 P. Malik et al., J. Nanopart. 2014, 2014.
- 201 TC Prathna et al., in Biomimetics Learning from Nature (ED: A. Mukherjee), Intech Open Access, Rijeka 2010, Ch. 1.
- 202 A. K. Mittal, Y. Chisti, U. C. Banerjee, Biotechnol. Adv. 2013, 31 (2), 346–356.
- 203 A. D. Dwivedi, K. Gopal, Colloids Surf., A 2010, 369 (1), 27–33.
- 204 A. K. Jha et al., Biotechnol. Progr. 2009, 25 (5), 1476–1479.
- 205 M. Thamima, S. Karuppuchamy, Adv. Sci. Eng. Med. 2015, 7 (1), 18–25.
- 206 G. Benelli, Parasitol. Res. 2015, 1–12.
- 207 K. S. Mukunthan, S. Balaji, Int. J. Green Nanotechnol. 2012, 4 (2), 71–79.
- 208 X. Li et al., J. Nanomater. 2011, 2011, 1–16.
- 209 A. Richardson et al., Chem. Educ. 2006, 11, 331–333.
- 210 S. Li et al., Green Chem. 2007, 9 (8), 852–858.
- 211 S. Mukherjee et al., Nanotechnology 2012, 23 (45), 455101–455111.
- 212 J. Newman, G. Blanchard, Langmuir 2006, 22 (13), 5882–5887.
- 213 V. Makarov et al., Acta naturae 2014, 6 (1), 35–44.
- 214 S. Si, T. K. Mandal, Chem. Eur. J. 2007, 13 (11), 3160–3168.
- 215 M. S. Akhtar, J. Panwar, Y.-S. Yun, ACS Sustainable Chem. Eng. 2013, 1 (6), 591–602.
- 216 K. R. Narayana et al., Indian J. Pharmacol. 2001, 33 (1), 2–16.
- 217 N. Ahmad et al., Colloids Surf., B 2010, 81 (1), 81–86.
- 218 B. Zheng et al., J. Colloid Interface Sci. 2013, 396, 138–145.
- 219 A. A. Sharbidre, D. M. Kasote, Curr. Biotechnol. 2013, 2 (2), 162–166.
- 220 N. Shabnam, P. Pardha-Saradhi, P. Sharmila, PLoS ONE 2014, 9 (1), 85241–85247.
- 221 N. Ahmad, S. Sharma, Green Sustainable Chem. 2012, 2, 141–147.
- 222 Green Biosynthesis of Nanoparticles: Mechanisms and Applications (Eds: M. Rai), CABI, Oxfordshire 2013, 235.
- 223
A. Q. Laghari et al., J. King Saud Univ., Sci. 2014, 26 (4), 300–304.
10.1016/j.jksus.2014.02.005 Google Scholar
- 224 D. Gnanasangeetha, S. D. Thambavani, Int. J. Pharm. Sci. Res. 2014, 5 (7), 2866–2873.
- 225 K. Vishwakarma, M.Sc. Thesis, National Institute of Technology, Rourkela, India 2013.
- 226 K. Chandran, S. Song, S.-I. Yun, Arabian J. Chem. 2014, in press.
- 227 P. A. N. Punyasiri et al., Arch. Biochem. Biophys. 2004, 431 (1), 22–30.
- 228 L. Boulekbache-Makhlouf, S. Slimani, K. Madani, Ind. Crops Prod. 2013, 41, 85–89.
- 229 W. Elfalleh et al., J. Med. Plants. Res. 2012, 6, 4724–4730.
- 230 A. Pengelly, Medicinal Activity of Dodonaea Viscosa: A Preliminary Study, Rural Industries Research and Development Corporation, Barton 2008.
- 231 A. Jindal, P. Kumar, Asian J. of Pharm. Clin. Res. 2013, 6 (2), 123–125.
- 232 S. Nees et al., Arzneimittelforschung 2003, 53 (5), 330–341.
- 233 P. Jain, S. Nimbrana, G. Kalia, Int. J. Pharm. Sci.: Rev. Res. 2010, 4 (2), 126–128.
- 234 N. Okamura et al., Phytochemistry 1994, 37 (5), 1463–1466.
- 235 U. K. Karmakar et al., Int. J. Pharm. Sci. Res. 2011, 2 (4), 999–1006.
- 236 G. Vyshnav, K. Lalitha, S. Nagamani, Int. J. Chem. Sci. 2013, 11 (2), 773–780.
- 237 K. C. Mouli, T. Vijaya, R. S. Dattatreya, J. Chin. Integr. Med. 2012, 10 (7), 784–792.
- 238 S. Z. Raduan et al., Int. J. Pharm. Pharm. Sci. 2013, 5 (4), 754–762.
- 239 A. Tiwari, S. Singh, S. Singh, Int. J. Sci. Res. Pub. 2014, 4 (1), 145–146.
- 240 O. A. Ebuehi, N. A. Okorie, Niger. Quart. J. Hosp. Med. 2009, 19 (4), 200–205.
- 241 G. Pandey, K. Verma, M. Singh, Int. J. Pharm. Pharm Sci. 2014, 6 (2), 444–447.
- 242 G. Rajakumar, A. A. Rahuman, Acta tropica 2011, 118 (3), 196–203.
- 243
M. C. Beghdad et al., African J. Biotechnol. 2014, 13 (3), 486–491.
10.5897/AJB2013.12833 Google Scholar
- 244 M. Moniruzzaman et al., Molecules 2012, 17 (11), 12851–12867.
- 245
A. Mishra, S. Kumar, A. K. Pandey, Sci. World J. 2013, 2013, 1–8.
10.1155/2013/292934 Google Scholar
- 246 B. Halliwell, J. M. Gutteridge, Free Radicals in Biology and Medicine, Pergamon Press, Oxford 1985, 331–332.
- 247 W. Zhu et al., Free Radical Biol. Med. 2012, 52 (2), 314–327.
- 248 A. Mishra et al., BioMed Res. Int. 2013, 2013, 1–10.
- 249 A. Mishra et al., Cell. Mol. Biol. 2011, 57 (1), 16–25.
- 250 A. K. Pandey et al., Int. J. Biol. Med. Res. 2010, 1 (4), 228–233.
- 251 J. A. Manthey, Microcirculation 2000, 7 (S1), S29–S34.
- 252 J. C. Cumella, H. Faden, E. Middleton, J. Allergy Clin.Immunol. 1987, 79 (1), 157–157.
- 253 A. Beretz, J. P. Cazenave, Prog. Clin. Biol. Res. 1988, 280, 187–200.
- 254
C. Butler, Econ. Bot. 1995, 49 (2), 196–196.
10.1007/BF02862924 Google Scholar
- 255 B. Gerdin, E. Svensjö, Int. J. Microcirc.: Clin. Exp. 1982, 2 (1), 39–46.
- 256 T. P. T. Cushnie, A. J. Lamb, Int. J. Antimicrob. Agents 2005, 26 (5), 343–356.
- 257 B. Q. Li et al., Biochem. Biophys. Res. Commun. 2000, 276 (2), 534–538.
- 258 J. W. Critchfield, S. T. Butera, T. M. Folks, AIDS Res. Hum. Retroviruses 1996, 12 (1), 39–46.