Preparation and swelling behavior of macroporous poly(acrylamide-co-sodium methacrylate) superabsorbent hydrogels
Y. Murali Mohan
Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
Search for more papers by this authorP. S. Keshava Murthy
Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
Search for more papers by this authorCorresponding Author
K. Mohana Raju
Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India===Search for more papers by this authorY. Murali Mohan
Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
Search for more papers by this authorP. S. Keshava Murthy
Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
Search for more papers by this authorCorresponding Author
K. Mohana Raju
Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
Synthetic Polymer Laboratory, Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India===Search for more papers by this authorAbstract
Macroporous superabsorbent hydrogels (SAHs) composed of acrylamide (AAm) and sodium methacrylate (NMA) were prepared by aqueous solution polymerization in the presence of a glucose solution. Their swelling capacity was investigated as a function of the concentrations of the glucose solution, sodium methacrylate, crosslinker, initiator, and activator. The porosity of the poly(acrylamide-co-sodium methacrylate) superabsorbent hydrogels was confirmed using scanning electron microscopy. The SAHs were characterized by IR spectroscopy. To estimate the effect on the swelling behavior, three types of crosslinkers were employed: N,N′-methylenebisacrylamide, 1,4-butanediol diacrylate, and diallyl phthalate. Network structural parameters such as initial swelling rate, swelling rate constant, and maximum equilibrium swelling were evaluated by water absorption measurement. The equilibrium water content (EWC%) of the AAm–NMA macroporous SAHs was found to be in the range of 93.31–99.68, indicating that these SAHs may have applications as biomaterials in the medicinal, pharmaceutical, and veterinary fields. Most of the SAHs prepared in this investigation followed non-Fickian-type diffusion, and few followed a case II– or super–case II-type diffusion. The diffusion coefficients of these macroporous SAHs were investigated. Further, the swelling behavior of these SAHs also was investigated at different pHs and in different salt solutions and simulated biological fluids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3202–3214, 2006
References
- 1 Buchholz, F. L. Superabsorbent Polymers Science and Technology, ACS symposium Series 573; American Chemical Society: Washington, DC, 1998.
- 2 Wichterle O. Encyclopedia of Polymer Science & Technology, Vol. 15; Interscience: New York, 1971.
- 3 Padmanabha Raju, M.; Mohana Raju, K. J Appl Polym Sci 2001, 80, 2635.
- 4
Mohana Raju, K.;
Padmanabha Raju, M.
Polym Int
2001,
50,
1.
10.1002/pi.721 Google Scholar
- 5 Mohana Raju, K.; Padmanabha Raju, M.; Murali Mohan, Y. J Appl Polym Sci 2002, 85, 1795.
- 6 Mohana Raju, K.; Padmanabha Raju, M.; Murali Mohan, Y. Polym Int 2003, 52, 768.
- 7 Hogari, K.; Ashiya, F. In Advances in Superabsorbent Polymers; American Chemical Society: Washington, DC, 1994.
- 8 Sakiyama, T.; Chu, C. H.; Fujii, T.; Yano, T. J Appl Polym Sci 1993, 50, 2021.
- 9 Shiga, T.; Hirose, Y.; Okada, A.; Kurauchi, T. J Appl Polym Sci 1992, 44, 249.
- 10 Kobayashi, T. K. J Appl Polym Sci 1987, 36, 1312.
- 11 Yoshida, M.; Asano, M.; Kumarakura, M. Eur Polym J 1989, 25, 1197.
- 12 Peppas, N. A. Fundamentals of pH- and Temperature-Sensitive Polymers: Pulsalite Drug Delivery; Wissenschaftliche, 1993.
- 13 Bajpai, S. K.; Bajpai, M.; Kalla, K. G. J Appl Polym Sci 2002, 84, 1133.
- 14 Kasgoz, H.; Ozgumus, S.; Orbay, M. Polymer 2003, 44, 1785.
- 15 Ali, A. E.; Shawky, H. A.; Rehim, H. A. A.; Hegazy, E. Eur Polym J 2003, 39, 2337.
- 16 Li, W.; Zhao, H.; Teasdale, P. R.; John, R.; Zhang, S. React Funct Polym 2002, 52, 31.
- 17 Oren, S.; Caykara, T.; Kantoglu, O.; Guven, O. J Appl Polym Sci 2000, 78, 2219.
- 18 Mellott, M. B.; Searcy, K.; Pishko, M. V. Biomaterials 2001, 22, 929.
- 19 Bajpai, K.; Mishra, A. J Appl Polym Sci 2004, 93, 2054.
- 20 Kabiri, K.; Omidian, H.; Zohuriaan-Mehr, M. J. Polym Int 2003, 52, 1158.
- 21 Kim, D.; Park, K. Polymer 2004, 45, 189.
- 22 Zhang, J. T.; Cheng, S. X.; Zhuo, R. X. J Polym Sci, Part A: Polym Chem 2003 41, 2390.
- 23 Gomez, C. G.; Alvarez Igarzabal, C. I.; Strumia, M. C. Polymer 2004, 45, 6189.
- 24 Xue, W.; Champ, S.; Huglin, M. B.; Jones, T. G. Eur Polym J 2004, 40, 467.
- 25 Kabiri, K.; Omidian, H.; Hashemi, S. A.; Zohuriaan-Mehr, M. J. Eur Polym J 2003, 39, 1341.
- 26
Chen, J.;
Park, H.;
Park, K.
J Biomed Mater Res
1999,
44,
53.
10.1002/(SICI)1097-4636(199901)44:1<53::AID-JBM6>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 27 Gemeinhart, R. A.; Park, H.; Park, K. J Biomed Mater Res 2001, 55, 54.
- 28 Gotoh, T.; Nakatani, Y.; Sakohara, S. J Appl Polym Sci 1998, 69, 895.
- 29 Yan, Q.; Hoffman, A. Polym Commun 1995, 36, 887.
- 30 Wu, X.; Hoffman, A. J Polym Sci, Polym Chem. Ed 1992, 30, 2121.
- 31 Zhang, X.-Z.; Zhuo, R.-X. Eur Polym J 2000, 36, 2301.
- 32 Badiger, M.; McNeil, M.; Graham, N. Biomaterials 1993, 14, 1059.
- 33 Oxely, H.; Corknill, P.; Fitton, J.; Tighe, B. Biomaterials 1993, 14, 1065.
- 34 Smith, S. J. U.S. Pat. 5,399,591 (1995).
- 35 Gemeinhart, R. A.; Park, H.; Park, K. Polym Adv Technol 2000, 11, 617.
- 36 Chen, J.; Park, K. Carbohydr Polym 2000, 41, 259.
- 37 Kabiri, K.; Omidian, H.; Hashemi, S. A.; Zohuriaan-Mehr, M. J. J Polym Mater 2003, 20, 17.
- 38 Pahm, D.; Trokhon, D. P. U.S. Pat. 5,328,935 (1994).
- 39 Patel, V. R.; Amiji, M. M. Pharm Res 1996, 13, 588.
- 40 Isik, B. J Appl Polym Sci 2004, 91, 1289.
- 41 Karadag, E.; Saraydin, D. Polym Bull 2002, 48, 299.
- 42 Shugar, G. J.; Dean, J. A. The Chemist's Ready Handbook; McGraw-Hill: New York, 1990.
- 43 Park, T. G.; Hoffman, A. S. J Appl Polym Sci 1992, 46, 659.
- 44 Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
- 45 Flory, P. J. Proc Roy Soc London Ser A 1976, 351.
- 46 Omedian, H.; Hashemi, S. A.; Sammes, P. G.; Meldrum, I. J. Polymer 1999, 40, 1753.
- 47 Nosaka, A. Y.; Tanzawa, H. J. J Appl Polym Sci 1991, 43, 1165.
- 48 Peniche, C.; Cohen, M. E.; Vazquez, B.; Roman, J. S. Polymer 1997, 38, 5977.
- 49 Flory, P. J.; Rehner, R. J Chem Phys 1943, 11, 521.
- 50 Brannon-Peppas, L.; Peppas, N. A. J Controlled Release 1989, 8, 267.
- 51
Alfrey, T.;
Gurnee, E. F.;
Lloyd, W. G.
J Polym Sci
1966,
12,
249.
10.1002/polc.5070120119 Google Scholar
- 52 Thomas, W. L.; Windle, A.-H. Polymer 1980, 21, 613.
- 53 Saraydin, D.; Oztop, H. Z.; Karadag, E.; Caldiran, Y.; Guven, O. Appl Bio Biotech 1999, 82, 115.
- 54 Ende, M. T. A.; Peppas, N. A. J Controlled Release 1997, 48, 47.