pH-Universal Electrocatalytic CO2 Reduction with Ampere-Level Current Density on Doping-Engineered Bismuth Sulfide
Zinan Jiang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
The authors were contributed to this paper equally.
Search for more papers by this authorShan Ren
Center for Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055 China
The authors were contributed to this paper equally.
Search for more papers by this authorXi Cao
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
The authors were contributed to this paper equally.
Search for more papers by this authorQikui Fan
Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorRui Yu
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
Search for more papers by this authorCorresponding Author
Jian Yang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
Search for more papers by this authorCorresponding Author
Junjie Mao
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
Search for more papers by this authorZinan Jiang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
The authors were contributed to this paper equally.
Search for more papers by this authorShan Ren
Center for Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055 China
The authors were contributed to this paper equally.
Search for more papers by this authorXi Cao
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
The authors were contributed to this paper equally.
Search for more papers by this authorQikui Fan
Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorRui Yu
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
Search for more papers by this authorCorresponding Author
Jian Yang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
Search for more papers by this authorCorresponding Author
Junjie Mao
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 Anhui, China
Search for more papers by this authorGraphical Abstract
The S-doped metallic Bi catalyst was formed by the electrochemical reconstruction of Bi2S3, which delivers outstanding performance in converting CO2 to formate/formic acid across a range of pH conditions. The simultaneous production of formate on both cathode and anode was also achieved by coupling CO2 reduction reaction with glycerol oxidation reaction.
Abstract
The practical application of the electrocatalytic CO2 reduction reaction (CO2RR) to form formic acid fuel is hindered by the limited activation of CO2 molecules and the lack of universal feasibility across different pH levels. Herein, we report a doping-engineered bismuth sulfide pre-catalyst (BiS-1) that S is partially retained after electrochemical reconstruction into metallic Bi for CO2RR to formate/formic acid with ultrahigh performance across a wide pH range. The best BiS-1 maintains a Faraday efficiency (FE) of ~95 % at 2000 mA cm−2 in a flow cell under neutral and alkaline solutions. Furthermore, the BiS-1 catalyst shows unprecedentedly high FE (~95 %) with current densities from 100 to 1300 mA cm−2 under acidic solutions. Notably, the current density can reach 700 mA cm−2 while maintaining a FE of above 90 % in a membrane electrode assembly electrolyzer and operate stably for 150 h at 200 mA cm−2. In situ spectra and density functional theory calculations reveals that the S doping modulates the electronic structure of Bi and effectively promotes the formation of the HCOO* intermediate for formate/formic acid generation. This work develops the efficient and stable electrocatalysts for sustainable formate/formic acid production.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202408412-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Reichstein, M. Bahn, P. Ciais, D. Frank, M. D. Mahecha, S. I. Seneviratne, J. Zscheischler, C. Beer, N. Buchmann, D. C. Frank, D. Papale, A. Rammig, P. Smith, K. Thonicke, M. Van Der Velde, S. Vicca, A. Walz, M. Wattenbach, Nature 2013, 500, 287–295.
- 2J. Rogelj, G. Luderer, R. C. Pietzcker, E. Kriegler, M. Schaeffer, V. Krey, K. Riahi, Nat. Clim. Change 2015, 5, 519–527.
- 3C. F. Shih, T. Zhang, J. Li, C. Bai, Joule 2018, 2, 1925–1949.
- 4P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science 2019, 364, eaav3506.
- 5N. Han, P. Ding, L. He, Y. Li, Y. Li, Adv. Energy Mater. 2020, 10, 1902338.
- 6Y. Zhao, X. Liu, Z. Liu, X. Lin, J. Lan, Y. Zhang, Y.-R. Lu, M. Peng, T.-S. Chan, Y. Tan, Nano Lett. 2021, 21, 6907–6913.
- 7L. Zhang, J. Feng, S. Liu, X. Tan, L. Wu, S. Jia, L. Xu, X. Ma, X. Song, J. Ma, X. Sun, B. Han, Adv. Mater. 2023, 35, 2209590.
- 8Q. Fan, P. Gao, S. Ren, Y. Qu, C. Kong, J. Yang, Y. Wu, Nano Res. 2023, 16, 2003–2010.
- 9Q. Fan, X. Zhang, X. Ge, L. Bai, D. He, Y. Qu, C. Kong, J. Bi, D. Ding, Y. Cao, X. Duan, J. Wang, J. Yang, Y. Wu, Adv. Energy Mater. 2021, 11, 2101424.
- 10J. Yang, X. Wang, Y. Qu, X. Wang, H. Huo, Q. Fan, J. Wang, L. Yang, Y. Wu, Adv. Energy Mater. 2020, 10, 2001709.
- 11T. Zhao, J. Li, J. Liu, F. Liu, K. Xu, M. Yu, W. Xu, F. Cheng, ACS Catal. 2023, 13, 4444–4453.
- 12X. Cao, S. Ren, X. Zhang, Q. Fan, Q. Chen, J. Yang, J. Mao, Chem 2024, 0, 10.1016/j.chempr.2024.02.014.
- 13D. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal. 2019, 2, 198–210.
- 14Z. Li, B. Sun, D. Xiao, Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, H. Cheng, B. Huang, Angew. Chem. Int. Ed. 2023, 62, e202217569.
- 15I. Dutta, S. Chatterjee, H. Cheng, R. K. Parsapur, Z. Liu, Z. Li, E. Ye, H. Kawanami, J. S. C. Low, Z. Lai, X. J. Loh, K. Huang, Adv. Energy Mater. 2022, 12, 2103799.
- 16D. A. Bulushev, J. R. H. Ross, ChemSusChem 2018, 11, 821–836.
- 17S. Chatterjee, I. Dutta, Y. Lum, Z. Lai, K.-W. Huang, Energy Environ. Sci. 2021, 14, 1194–1246.
- 18M. Rumayor, A. Dominguez-Ramos, A. Irabien, Sustain. Prod. Consum. 2019, 18, 72–82.
- 19L. Li, Z. Liu, X. Yu, M. Zhong, Angew. Chem. Int. Ed. 2023, 62, e202300226.
- 20L.-W. Chen, Y.-C. Hao, J. Li, L. Hu, X. Zuo, C. Dai, Z.-L. Yu, H.-Z. Huang, W. Tian, D. Liu, X. Chang, P. Li, R. Shao, B. Wang, A.-X. Yin, Small 2023, 19, 2301639.
- 21Y. Qiao, W. Lai, K. Huang, T. Yu, Q. Wang, L. Gao, Z. Yang, Z. Ma, T. Sun, M. Liu, C. Lian, H. Huang, ACS Catal. 2022, 12, 2357–2364.
- 22H. Shen, H. Jin, H. Li, H. Wang, J. Duan, Y. Jiao, S.-Z. Qiao, Nat. Commun. 2023, 14, 2843.
- 23L.-P. Chi, Z.-Z. Niu, Y.-C. Zhang, X.-L. Zhang, J. Liao, Z.-Z. Wu, P.-C. Yu, M.-H. Fan, K.-B. Tang, M.-R. Gao, Proc. Natl. Acad. Sci. 2023, 120, e2312876120.
- 24T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C.-W. Pao, J. Xiao, C. Xia, J. Zeng, Nat. Nanotechnol. 2021, 16, 1386–1393.
- 25J. Dong, Y. Liu, J. Pei, H. Li, S. Ji, L. Shi, Y. Zhang, C. Li, C. Tang, J. Liao, S. Xu, H. Zhang, Q. Li, S. Zhao, Nat. Commun. 2023, 14, 6849.
- 26Y. Li, E. P. Delmo, G. Hou, X. Cui, M. Zhao, Z. Tian, Y. Zhang, M. Shao, Angew. Chem. Int. Ed. 2023, 62, e202313522.
- 27Y. Wang, Y. Li, J. Liu, C. Dong, C. Xiao, L. Cheng, H. Jiang, H. Jiang, C. Li, Angew. Chem. Int. Ed. 2021, 60, 7681–7685.
- 28X. Zhang, X. Yan, P. Chen, P. Zhang, X. Kang, J. Ma, C. Chen, B. Han, Angew. Chem. Int. Ed. 2023, e202315822.
- 29Y. Luo, S. Chen, J. Zhang, X. Ding, B. Pan, L. Wang, J. Lu, M. Cao, Y. Li, Adv. Mater. 2023, 35, 2303297.
- 30X. Ren, F. Liu, H. Wu, Q. Lu, J. Zhao, Y. Liu, J. Zhang, J. Mao, J. Wang, X. Han, Y. Deng, W. Hu, Angew. Chem. Int. Ed. 2023, e202316640.
- 31J. Zhu, J. Li, R. Lu, R. Yu, S. Zhao, C. Li, L. Lv, L. Xia, X. Chen, W. Cai, J. Meng, W. Zhang, X. Pan, X. Hong, Y. Dai, Y. Mao, J. Li, L. Zhou, G. He, Q. Pang, Y. Zhao, C. Xia, Z. Wang, L. Dai, L. Mai, Nat. Commun. 2023, 14, 4670.
- 32L. Lin, X. He, X.-G. Zhang, W. Ma, B. Zhang, D. Wei, S. Xie, Q. Zhang, X. Yi, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202214959.
- 33A. Chen, X. Dong, J. Mao, W. Chen, C. Zhu, S. Li, G. Wu, Y. Wei, X. Liu, G. Li, Y. Song, Z. Jiang, W. Wei, Y. Sun, Appl. Catal. B Environ. 2023, 333, 122768.
- 34L.-P. Chi, Z.-Z. Niu, X.-L. Zhang, P.-P. Yang, J. Liao, F.-Y. Gao, Z.-Z. Wu, K.-B. Tang, M.-R. Gao, Nat. Commun. 2021, 12, 5835.
- 35B. Jia, Z. Chen, C. Li, Z. Li, X. Zhou, T. Wang, W. Yang, L. Sun, B. Zhang, J. Am. Chem. Soc. 2023, 145, 14101–14111.
- 36H. Xue, Z.-H. Zhao, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc. 2023, 145, 16978–16982.
- 37J. Gu, S. Liu, W. Ni, W. Ren, S. Haussener, X. Hu, Nat. Catal. 2022, 5, 268–276.
- 38H. Shen, Y. Zhao, L. Zhang, Y. He, S. Yang, T. Wang, Y. Cao, Y. Guo, Q. Zhang, H. Zhang, Adv. Energy Mater. 2023, 13, 2202818.
- 39Z. Wang, Y. Zhou, C. Xia, W. Guo, B. You, B. Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 19107–19112.
- 40L. Lv, R. Lu, J. Zhu, R. Yu, W. Zhang, E. Cui, X. Chen, Y. Dai, L. Cui, J. Li, L. Zhou, W. Chen, Z. Wang, L. Mai, Angew. Chem. Int. Ed. 2023, 62, e202303117.
- 41Y. Zhang, F. Li, X. Zhang, T. Williams, C. D. Easton, A. M. Bond, J. Zhang, J. Mater. Chem. A 2018, 6, 4714–4720.
- 42T. Kim, A. Kargar, Y. Luo, R. Mohammed, E. Martinez-Loran, A. Ganapathi, P. Shah, D. P. Fenning, ACS Appl. Energy Mater. 2018, 1, 1965–1972.
- 43W. Wang, X. Wang, Z. Ma, Y. Wang, Z. Yang, J. Zhu, L. Lv, H. Ning, N. Tsubaki, M. Wu, ACS Catal. 2023, 13, 796–802.
- 44C. Li, Z. Liu, X. Zhou, L. Zhang, Z. Fu, Y. Wu, X. Lv, G. Zheng, H. Chen, Energy Environ. Sci. 2023, 16, 3885–3898.
- 45X. Chen, J. Chen, H. Chen, Q. Zhang, J. Li, J. Cui, Y. Sun, D. Wang, J. Ye, L. Liu, Nat. Commun. 2023, 14, 751.
- 46L. Hu, J. A. Wrubel, C. M. Baez-Cotto, F. Intia, J. H. Park, A. J. Kropf, N. Kariuki, Z. Huang, A. Farghaly, L. Amichi, P. Saha, L. Tao, D. A. Cullen, D. J. Myers, M. S. Ferrandon, K. C. Neyerlin, Nat. Commun. 2023, 14, 7605.
- 47C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang, E. Stavitski, H. N. Alshareef, H. Wang, Nat. Energy 2019, 4, 776–785.
- 48G. Wu, X. Dong, J. Mao, G. Li, C. Zhu, S. Li, A. Chen, G. Feng, Y. Song, W. Chen, W. Wei, Chem. Eng. J. 2023, 468, 143640.