Sono-Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings
Hanxiao Mei
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
These authors contributed equally to this work.
Search for more papers by this authorZhiliang Gao
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
These authors contributed equally to this work.
Search for more papers by this authorKaijie Zhao
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorMengqi Li
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorProf. Muthupandian Ashokkumar
School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorProf. Aixin Song
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Prof. Jiwei Cui
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorCorresponding Author
Prof. Frank Caruso
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Jingcheng Hao
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorHanxiao Mei
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
These authors contributed equally to this work.
Search for more papers by this authorZhiliang Gao
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
These authors contributed equally to this work.
Search for more papers by this authorKaijie Zhao
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorMengqi Li
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorProf. Muthupandian Ashokkumar
School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorProf. Aixin Song
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Prof. Jiwei Cui
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorCorresponding Author
Prof. Frank Caruso
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Jingcheng Hao
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorGraphical Abstract
Abstract
We report a sono-Fenton strategy to mediate the supramolecular assembly of metal–phenolic networks (MPNs) as substrate-independent coatings using phenol and phenyl derivatives as building blocks. The assembly process is initiated from the generation of hydroxyl radicals (.OH) using high-frequency ultrasound (412 kHz), while the metal ions synergistically participate in the production of additional .OH for hydroxylation/phenolation of phenol and phenyl derivatives via the Fenton reaction and also coordinate with the phenolic compounds for film formation. The coating strategy is applicable to various phenol and phenyl derivatives and different metal ions including FeII, FeIII, CuII, and CoII. In addition, the sono-Fenton strategy allows real-time control over the assembly process by turning the high-frequency ultrasound on or off. The properties of the building blocks are maintained in the formed films. This work provides an environmentally friendly and controllable method to expand the application of phenolic coatings for surface engineering.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202108462-sup-0001-misc_information.pdf985.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. A. Marmisollé, J. Irigoyen, D. Gregurec, S. Moya, O. Azzaroni, Adv. Funct. Mater. 2015, 25, 4144–4152;
- 1bA. M. S. Kumar, S. Sivakova, J. D. Fox, J. E. Green, R. E. Marchant, S. J. Rowan, J. Am. Chem. Soc. 2008, 130, 1466—1476;
- 1cN. Song, Z. Zhang, P. Liu, Y. W. Yang, L. Wang, D. Wang, B. Z. Tang, Adv. Mater. 2020, 32, 2004208;
- 1dA. S. Law, L. C. Lee, M. C. Yeung, K. K. Lo, V. W. Yam, J. Am. Chem. Soc. 2019, 141, 18570–18577;
- 1eH. Lee, W. I. Kim, W. Youn, T. Park, S. Lee, T. S. Kim, J. F. Mano, I. S. Choi, Adv. Mater. 2018, 30, 1805091.
- 2
- 2aT. S. Sileika, D. G. Barrett, R. Zhang, K. H. A. Lau, P. B. Messersmith, Angew. Chem. Int. Ed. 2013, 52, 10766–10770; Angew. Chem. 2013, 125, 10966–10970;
- 2bH. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426–430;
- 2cH. A. Lee, Y. F. Ma, F. Zhou, S. Hong, H. Lee, Acc. Chem. Res. 2019, 52, 704–713.
- 3
- 3aH. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. v. Koeverden, G. K. Such, J. Cui, F. Caruso, Science 2013, 341, 154–157;
- 3bJ. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. von Elverfeldt, C. E. Hagemeyer, F. Caruso, Angew. Chem. Int. Ed. 2014, 53, 5546–5551; Angew. Chem. 2014, 126, 5652–5657.
- 4
- 4aW. Luo, G. Xiao, F. Tian, J. J. Richardson, Y. Wang, J. Zhou, J. Guo, X. Liao, B. Shi, Energy Environ. Sci. 2019, 12, 607–614;
- 4bW. Li, J. Shi, Y. Zhao, Q. Huo, Y. Sun, Y. Wu, Y. Tian, Z. Jiang, ACS Sustainable Chem. Eng. 2020, 8, 1831–1839.
- 5
- 5aG. Yun, S. Pan, T. Y. Wang, J. Guo, J. J. Richardson, F. Caruso, Adv. Healthcare Mater. 2018, 7, 1700934;
- 5bT. Zeng, X. Zhang, Y. Guo, H. Niu, Y. Cai, J. Mater. Chem. A 2014, 2, 14807—14811.
- 6
- 6aH. Lee, J. Park, S. Y. Han, S. Han, W. Youn, H. Choi, G. Yun, I. S. Choi, Chem. Commun. 2020, 56, 13748–13751;
- 6bB. J. Kim, J. K. Lee, I. S. Choi, Chem. Commun. 2019, 55, 2142–2145;
- 6cK. Li, G. Xiao, J. J. Richardson, B. L. Tardy, H. Ejima, W. Huang, J. Guo, X. Liao, B. Shi, Adv. Sci. 2019, 6, 1801688;
- 6dZ. Lin, J. Zhou, C. Cortez-Jugo, Y. Han, Y. Ma, S. Pan, E. Hanssen, J. J. Richardson, F. Caruso, J. Am. Chem. Soc. 2020, 142, 335–341.
- 7Q. Zhong, J. J. Richardson, S. Li, W. Zhang, Y. Ju, J. Li, S. Pan, J. Chen, F. Caruso, Angew. Chem. Int. Ed. 2020, 59, 1711–1717; Angew. Chem. 2020, 132, 1728–1734.
- 8
- 8aP. N. Amaniampong, Q. T. Trinh, K. De Oliveira Vigier, D. Q. Dao, N. H. Tran, Y. Wang, M. P. Sherburne, F. Jerome, J. Am. Chem. Soc. 2019, 141, 14772–14779;
- 8bS. K. Bhangu, G. Bocchinfuso, M. Ashokkumar, F. Cavalieri, Nanoscale Horiz. 2020, 5, 553–563;
- 8cJ. Collins, T. G. McKenzie, M. D. Nothling, S. Allison-Logan, M. Ashokkumar, G. G. Qiao, Macromolecules 2019, 52, 185–195.
- 9
- 9aM. Dávila-Rodríguez, A. López-Malo, E. Palou, N. Ramírez-Corona, M. T. Jiménez-Munguía, J. Food Sci. Tech. 2020, 57, 4133–4142;
- 9bP. Juliano, F. Bainczyk, P. Swiergon, M. I. M. Supriyatna, C. Guillaume, L. Ravetti, P. Canamasas, G. Cravotto, X. Q. Xu, Ultrason. Sonochem. 2017, 38, 104–114;
- 9cM. Kaci, E. Arab-Tehrany, I. Desjardins, S. Banon-Desobry, S. Desobry, J. Food Eng. 2017, 194, 109–118.
- 10
- 10aZ. Eren, K. O'Shea, J. Environ. Eng. 2019, 145, 04019070;
- 10bI. D. Manariotis, H. K. Karapanagioti, C. V. Chrysikopoulos, Water Res. 2011, 45, 2587–2594.
- 11
- 11aS. K. Bhangu, R. Singla, E. Colombo, M. Ashokkumar, F. Cavalieri, Green Chem. 2018, 20, 816–821;
- 11bF. Cavalieri, E. Colombo, E. Nicolai, N. Rosato, M. Ashokkumar, Mater. Horiz. 2016, 3, 563–567;
- 11cG. J. Price, P. F. Smith, P. J. West, Ultrasonics 1991, 29, 166–170.
- 12
- 12aT. G. McKenzie, E. Colombo, Q. Fu, M. Ashokkumar, G. G. Qiao, Angew. Chem. Int. Ed. 2017, 56, 12302–12306; Angew. Chem. 2017, 129, 12470–12474;
- 12bZ. Gao, H. Zhu, X. Li, P. Zhang, M. Ashokkumar, F. Cavalieri, J. Hao, J. Cui, ACS Macro Lett. 2019, 8, 1285–1290.
- 13H. Mei, Z. Gao, Q. Wang, H. Sun, K. Zhao, P. Zhang, J. Hao, M. Ashokkumar, J. Cui, Ultrason. Sonochem. 2021, 74, 105571.
- 14
- 14aH. Fenton, J. Chem. Soc. Trans. 1894, 65, 899—910;
- 14bF. Haber, J. Weiss, Proc. R. Soc. London, Ser. A 1934, 147, 332—351.
- 15
- 15aA. Reyhani, T. G. McKenzie, H. Ranji-Burachaloo, Q. Fu, G. G. Qiao, Chem. Eur. J. 2017, 23, 7221–7226;
- 15bM. D. Nothling, T. G. McKenzie, A. Reyhani, G. G. Qiao, Macromol. Rapid Commun. 2018, 39, 1800179;
- 15cZ. Shen, J. Song, B. C. Yung, Z. Zhou, A. Wu, X. Chen, Adv. Mater. 2018, 30, 1704007;
- 15dX. Meng, X. Zhang, M. Liu, B. Cai, N. He, Z. Wang, Appl. Mater. Today 2020, 21, 100864.
- 16
- 16aR. Saleh, A. Taufik, Sep. Purif. Technol. 2019, 210, 563–573;
- 16bF. Shokoofehpoor, N. Chaibakhsh, A. G. Gilani, Sep. Sci. Technol. 2019, 54, 2943–2958.
- 17
- 17aR. Huang, Z. Fang, X. Yan, W. Cheng, Chem. Eng. J. 2012, 197, 242–249;
- 17bC. Wang, Y. Shih, Sep. Purif. Technol. 2015, 140, 6–12.
- 18T. G. McKenzie, F. Karimi, M. Ashokkumar, G. G. Qiao, Chem. Eur. J. 2019, 25, 5372–5388.
- 19J. Madhavan, F. Grieser, M. Ashokkumar, Water Sci. Technol. 2009, 60, 2195–2202.
- 20
- 20aG. Harichandran, S. Prasad, Ultrason. Sonochem. 2016, 29, 178–185;
- 20bX. Wang, Z. Yao, J. Wang, W. Guo, G. Li, Ultrason. Sonochem. 2008, 15, 43–48.
- 21E. Donath, G. B. Sukhorukov, F. Caruso, S. Davis, H. Möhwald, Angew. Chem. Int. Ed. 1998, 37, 2201–2205; Angew. Chem. 1998, 110, 2323–2327.
10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 22A. M. Doerr, J. M. Burroughs, S. R. Gitter, X. Yang, A. J. Boydston, B. K. Long, ACS Catal. 2020, 10, 14457–14515.
- 23
- 23aQ. Dai, Q. Yu, Y. Tian, X. Xie, A. Song, F. Caruso, J. Hao, J. Cui, ACS Appl. Mater. Interfaces 2019, 11, 29305–29311;
- 23bH. Geng, L. Zhuang, M. Li, H. Liu, F. Caruso, J. Hao, J. Cui, ACS Appl. Mater. Interfaces 2020, 12, 29826–29834.
- 24
- 24aQ. Z. Zhong, S. Pan, M. A. Rahim, G. Yun, J. Li, Y. Ju, Z. Lin, Y. Han, Y. Ma, J. J. Richardson, F. Caruso, ACS Appl. Mater. Interfaces 2018, 10, 33721–33729;
- 24bJ. Guo, B. L. Tardy, A. J. Christofferson, Y. Dai, J. J. Richardson, W. Zhu, M. Hu, Y. Ju, J. Cui, R. R. Dagastine, I. Yarovsky, F. Caruso, Nat. Nanotechnol. 2016, 11, 1105–1111.
- 25A. D. Bokare, W. Choi, J. Hazard. Mater. 2014, 275, 121–135.
- 26
- 26aR. Pangeni, J. K. Sahni, J. Ali, S. Sharma, S. Baboota, Expert Opin. Drug Delivery 2014, 11, 1285—1298;
- 26bM. Vestergaard, H. Ingmer, Int. J. Antimicrob. Agents 2019, 53, 716–723;
- 26cB. Tian, J. Liu, J. Sci. Food Agric. 2020, 100, 1392–1404.