Crystal Engineering of a Microporous, Catalytically Active fcu Topology MOF Using a Custom-Designed Metalloporphyrin Linker†
Le Meng
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorQigan Cheng
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorChungsik Kim
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorWen-Yang Gao
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorLukasz Wojtas
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorYu-Sheng Chen
ChemMatCARS, Center for Advanced Radiation Sources, the University of Chicago, 9700 S. Cass Avenue, Argonne, IL 60439 (USA)
Search for more papers by this authorCorresponding Author
Prof. Michael J. Zaworotko
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/Search for more papers by this authorCorresponding Author
Prof. X. Peter Zhang
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/Search for more papers by this authorCorresponding Author
Prof. Shengqian Ma
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/Search for more papers by this authorLe Meng
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorQigan Cheng
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorChungsik Kim
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorWen-Yang Gao
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorLukasz Wojtas
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Search for more papers by this authorYu-Sheng Chen
ChemMatCARS, Center for Advanced Radiation Sources, the University of Chicago, 9700 S. Cass Avenue, Argonne, IL 60439 (USA)
Search for more papers by this authorCorresponding Author
Prof. Michael J. Zaworotko
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/Search for more papers by this authorCorresponding Author
Prof. X. Peter Zhang
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/Search for more papers by this authorCorresponding Author
Prof. Shengqian Ma
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) http://sqma.myweb.usf.edu/Search for more papers by this authorThe authors acknowledge the University of South Florida and the US Department of Energy (DE-AR0000177) for financial for financial support of this work. The authors thank Dr. Daqiang Yuan for help in drawing structural pictures of MMPF-3. The crystal diffraction of MMPF-3 was carried out at the Advanced Photon Source on beamline 15ID-B of ChemMatCARS Sector 15 (NSF/CHE-0822838, DE-AC02-06CH11357).
Graphical Abstract
A 12-connected fcu metal–organic framework (MOF), MMPF-3, has been prepared using a CoII metalloporphyrin. MMPF-3 is comprised of the same polyhedral supermolecular building blocks as the prototypal fcu-MOF, fcu-MOF-1, and its nanoscale cavities feature 18 catalytically active cobalt centers. The high density (ca. 5 cobalt sites/nm3) affords MMPF-3 superior performance in catalytic epoxidation of trans-stilbene compared to other MOFs.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
anie_201205603_sm_miscellaneous_information.pdf675.8 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116, 2388–2430; Angew. Chem. Int. Ed. 2004, 43, 2334–2375;
- 1bL. R. Macgillivray, Metal-Organic Frameworks: Design and Application, Wiley, Hoboken, 2010;
10.1002/9780470606858 Google Scholar
- 1cC. Janiak, J. Chem. Soc. Dalton Trans. 2003, 2781–2804;
- 1dH.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–674.
- 2
- 2aG. R. Desiraju, Angew. Chem. 1995, 107, 2541–2558;
10.1002/ange.19951072105 Google ScholarAngew. Chem. Int. Ed. Engl. 1995, 34, 2311–2327;
- 2bG. R. Desiraju, Angew. Chem. 2007, 119, 8492–8508;
10.1002/ange.200700534 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 8342–8356;
- 2cB. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629–1658;
- 2dM. B. Andrews, C. L. Cahill, Angew. Chem. 2012, 124, 6735–6738;
10.1002/ange.201202402 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 6631–6634;
- 2eG. B. Gardner, D. Venkataraman, J. D. Moore, S. Lee, Nature 1995, 374, 792–795;
- 2fJ. T. A. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffmann, F. Cora, B. Slater, A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367–371;
- 2gM. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319–330.
- 3
- 3aO. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714;
- 3bM. O’Keeffe, Chem. Soc. Rev. 2009, 38, 1215–1217;
- 3cD. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1257–1283;
- 3dM. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675–702.
- 4
- 4aL. J. Murray, M. Dinca, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294–1314;
- 4bS. Ma, H.-C. Zhou, Chem. Commun. 2010, 46, 44–53;
- 4cM. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Chem. Rev. 2012, 112, 782–835.
- 5
- 5aJ.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504;
- 5bS. Ma, Pure Appl. Chem. 2009, 81, 2235–2251;
- 5cJ.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869–932;
- 5dH. Wu, Q. Gong, D. H. Olson, J. Li, Chem. Rev. 2012, 112, 836–868.
- 6
- 6aJ.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, H.-C. Zhou, Coord. Chem. Rev. 2011, 255, 1791–1823;
- 6bY.-S. Bae, R. Q. Snurr, Angew. Chem. 2011, 123, 11790–11801; Angew. Chem. Int. Ed. 2011, 50, 11586–11596;
- 6cK. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781;
- 6dR. Vaidhyanathan, S. S. Iremonger, G. K. H. Shimizu, P. G. Boyd, S. Alavi, T. K. Woo, Science 2010, 330, 650–653;
- 6eW.-Y. Gao, W. Yan, R. Cai, K. Williams, A. Salas, L. Wojtas, X. Shi, S. Ma, Chem. Commun. 2012, 48, 8898–8900.
- 7
- 7aL. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105–1125;
- 7bY. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126–1162.
- 8
- 8aM. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc. 1994, 116, 1151–1152; J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459;
- 8bA. Corma, H. Garcıa, F. X. Llabrees i Xamena, Chem. Rev. 2010, 110, 4606–4655;
- 8cM. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196–1231.
- 9
- 9aS. Ma, L. Meng, Pure Appl. Chem. 2011, 83, 167–188;
- 9bC. Wang, T. Zhang, W. Lin, Chem. Rev. 2012, 112, 1084–1104;
- 9cW. Zhang, R.-G. Xiong, Chem. Rev. 2012, 112, 1163–1195;
- 9dS. M. Cohen, Chem. Rev. 2012, 112, 970–1000;
- 9eP. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Ferey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232–1268;
- 9fA. Bétard, R. A. Fischer, Chem. Rev. 2012, 112, 1055–1083.
- 10
- 10aJ. J. Perry IV, J. A. Perman, M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400–1417;
- 10bY. Inokuma, T. Arai, M. Fujita, Nat. Chem. 2010, 2, 780–783;
- 10cJ. Zhang, J. T. Bu, S. Chen, T. Wu, S. Zheng, Y. Chen, R. A. Nieto, P. Feng, X. Bu, Angew. Chem. 2010, 122, 9060–9063; Angew. Chem. Int. Ed. 2010, 49, 8876–8879;
- 10dR. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810–6918.
- 11
- 11aO. K. Farha, O. Yazaydın, I. Eryazici, C. Malliakas, B. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, J. T. Hupp, Nat. Chem. 2010, 2, 944–948;
- 11bH. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424–428.
- 12
- 12aS. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc. 2008, 130, 1012–1016;
- 12bS. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu, B. Chen, Angew. Chem. 2010, 122, 4719–4722; Angew. Chem. Int. Ed. 2010, 49, 4615–4618.
- 13S. Hermes, M.-K. Schroter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. W. Fischer, R. A. Fischer, Angew. Chem. 2005, 117, 6394–6397;
10.1002/ange.200462515 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 6237–6241.
- 14C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, Z. M. Su, J. Am. Chem. Soc. 2009, 131, 1883–1888.
- 15
- 15aR. W. Larsen, L. Wojtas, J. Perman, R. L. Musselman, M. J. Zaworotko, C. M. Vetromile, J. Am. Chem. Soc. 2011, 133, 10356–10359;
- 15bZ. Zhang, L. Zhang, L. Wojtas, P. Nugent, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2012, 134, 924–927;
- 15cZ. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2012, 134, 928–933.
- 16
- 16aV. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R. L. Musselman, S. Ma, J. Am. Chem. Soc. 2011, 133, 10382–10385;
- 16bY. Chen, V. Lykourinou, C. Vetromile, T. Hoang, L.-J. Ming, R. Larsen, S. Ma, J. Am. Chem. Soc. 2012, 134, 13188–13191;
- 16cY. Chen, V. Lykourinou, T. Hoang, L.-J. Ming, S. Ma, Inorg. Chem. 2012, DOI: .
- 17
- 17aM. C. Das, S. Xiang, Z. Zhang, B. Chen, Angew. Chem. 2011, 123, 10696–10707; Angew. Chem. Int. Ed. 2011, 50, 10510–10520;
- 17bS. H. Cho, B. Q. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt, Chem. Commun. 2006, 2563–2565;
- 17cF. Song, C. Wang, J. M. Falkowski, L. Ma, W. Lin, J. Am. Chem. Soc. 2010, 132, 15390–15398;
- 17dC. Zhu, G. Yuan, X. Chen, Z. Yang, Y. Cui, J. Am. Chem. Soc. 2012, 134, 8058–8063;
- 17eC. M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 2009, 109, 1630–1658;
- 17fK. S. Suslick, P. Bhyrappa, J.-H. Chou, M. E. Kosal, S. Nakagaki, D. W. Smithenry, S. R. Wilson, Acc. Chem. Res. 2005, 38, 283–291;
- 17gI. Goldberg, Chem. Commun. 2005, 1243–1254;
- 17hA. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2009, 131, 4204–4205;
- 17iT. Lang, A. Guenet, E. Graf, N. Kyritsakas, M. W. Hosseini, Chem. Commun. 2010, 46, 3508–3510;
- 17jO. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen, J. T. Hupp, J. Am. Chem. Soc. 2011, 133, 5652–5655;
- 17kL. D. DeVries, P. M. Barron, E. P. Hurley, C. Hu, W. Choe, J. Am. Chem. Soc. 2011, 133, 14848–14851;
- 17lC. Zou, Z. Zhang, X. Xu, Q. Gong, J. Li, C.-D. Wu, J. Am. Chem. Soc. 2011, 133, 87–90;
- 17mX.-L. Yang, M.-H. Xie, C. Zou, Y. He, B. Chen, M. O’Keeffe, C.-D. Wu, J. Am. Chem. Soc. 2012, 134, 10638–10645.
- 18
- 18aX.-S. Wang, L. Meng, Q. Cheng, C. Kim, L. Wojtas, M. Chrzanowski, Y.-S. Chen, X. P. Zhang, S. Ma, J. Am. Chem. Soc. 2011, 133, 16322–16325;
- 18bX.-S. Wang, M. Chrzanowski, W.-Y. Gao, L. Wojtas, Y.-S. Chen, M. J. Zaworotko, S. Ma, Chem. Sci. 2012, 3, 2823–2827.
- 19A. J. Cairns, J. A. Perman, L. Wojtas, V. C. Kravtsov, M. H. Alkordi, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2008, 130, 1560–1561.
- 20Y. Chen, K. B. Fields, X. P. Zhang, J. Am. Chem. Soc. 2004, 126, 14718–14719.
- 21A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.
- 22J. Weber, J. Schmidt, A. Thomas, W. Bohlmann, Langmuir 2010, 26, 15650–15656.
- 23
- 23aM. J. Beier, W. Kleist, M. T. Wharmby, R. Kissner, B. Kimmerle, P. A. Wright, J.-D. Grunwaldt, A. Baiker, Chem. Eur. J. 2012, 18, 887–898;
- 23bJ. Zhang, A. V. Biradar, S. Pramanik, T. J. Emge, T. Asefa, J. Li, Chem. Commun. 2012, 48, 6541–6543.
- 24X.-S. Wang, M. Chrzanowski, C. Kim, W.-Y. Gao, L. Wojtas, Y.-S. Chen, X. P. Zhang, S. Ma, Chem. Commun. 2012, 48, 7173–7175.
- 25E.-Y. Choi, C. A. Wray, C. Hu, W. Choe, CrystEngComm 2009, 11, 553–555.
- 26aC.-M. Che, J.-S. Huang, Chem. Commun. 2009, 3996–4015;
- 26bR. A. Sheldon, Metalloporphyrins in catalytic oxidations, Marcel Dekker, New York, 1994;
- 26cH.-J. Lu, X. P. Zhang, Chem. Soc. Rev. 2011, 40, 1899–1909.