Uncovering Nitrosyl Reactivity at N-Heterocyclic Carbene Center
Junbeom Park
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
Search for more papers by this authorJaelim Kim
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
Search for more papers by this authorGu Yoon Jeong
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Youngsuk Kim
Department of Chemistry, Pusan National University, Busan, 46241 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Eunsung Lee
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
Search for more papers by this authorJunbeom Park
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
Search for more papers by this authorJaelim Kim
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
Search for more papers by this authorGu Yoon Jeong
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Youngsuk Kim
Department of Chemistry, Pusan National University, Busan, 46241 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Eunsung Lee
Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
Search for more papers by this authorAbstract
N-heterocyclic carbenes (NHCs) have garnered much attention due to their unique properties, such as strong σ-donating and π-accepting abilities, as well as their transition-metal-like reactivity toward small molecules. In 2015, we discovered that NHCs can react with nitric oxide (NO) gas to form radical adducts that resemble transition metal nitrosyl complexes. To elucidate the analogy between NHC and transition metal NO adducts, here we have undertaken a systematic investigation of the electron- and proton-transfer chemistry of [NHC−NO]⋅ (N-heterocyclic carbene nitric oxide radical) compounds. We have accessed a suite of compounds, comprised of [NHC−NO]+, [NHC−NO]−, [NHC−NOH]0, and [NHC−NHOH]+ species. In particular, [NHC−NO]− was isolated as potassium and lithium ion adducts. Most interestingly, a monomeric potassium [NHC−NO]− compound was isolated with the assistance of 18-crown-6, which is the first instance of a monomeric alkali N-oxyl compound to the best of our knowledge. Our results demonstrate that [NHC−NO]⋅ exhibits redox behavior broadly similar to metal nitrosyl complexes, which opens up more possibilities for utilizing NHCs to build on the known reactivity of metal complexes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202314978-sup-0001-I41a-final.cif551.9 KB | Supporting Information |
ange202314978-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
ange202314978-sup-0001-P-1-final-response.cif190.9 KB | Supporting Information |
ange202314978-sup-0001-P1.cif521.6 KB | Supporting Information |
ange202314978-sup-0001-P21m_tw-final.cif231.6 KB | Supporting Information |
ange202314978-sup-0001-Pbca-final.cif5 MB | Supporting Information |
ange202314978-sup-0001-R-3-final.cif2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39–92.
- 2
- 2aM. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496;
- 2bH. Song, E. Lee, Trends Chem. 2023, 5, 112–115;
- 2cH. Kim, E. Lee, Bull. Korean Chem. Soc. 2022, 43, 1328–1341;
- 2dH. Song, E. Pietrasiak, E. Lee, Acc. Chem. Res. 2022, 55, 2213–2223;
- 2eM. Kim, H. Kim, S. Kim, S. Hong, E. Lee, Organometallics 2022, 41, 1905–1910;
- 2fH. Song, G. Kwon, C. Citek, S. Jeon, K. Kang, E. Lee, ACS Appl. Mater. Interfaces 2021, 13, 46558–46565;
- 2gJ. Back, G. Kwon, J. E. Byeon, H. Song, K. Kang, E. Lee, ACS Appl. Mater. Interfaces 2020, 12, 37338–37345;
- 2hS. Kang, S. E. Byeon, H. J. Yoon, Bull. Korean Chem. Soc. 2021, 42, 712–723;
- 2iY. Gao, S. Yazdani, A. Kendrick IV, G. P. Junor, T. Kang, D. B. Grotjahn, G. Bertrand, R. Jazzar, K. M. Engle, Angew. Chem. Int. Ed. 2021, 60, 19871–19878;
- 2jJ. Morvan, M. Mauduit, G. Bertrand, R. Jazzar, ACS Catal. 2021, 11, 1714–1748;
- 2kY. Gao, N. Kim, S. D. Mendoza, S. Yazdani, A. Faria Vieira, M. Liu, A. I. V. Kendrick, D. B. Grotjahn, G. Bertrand, R. Jazzar, K. M. Engle, ACS Catal. 2022, 12, 7243–7247;
- 2lA. Del Vecchio, J. Talcik, S. Colombel-Rouen, J. Lorkowski, M. R. Serrato, T. Roisnel, N. Vanthuyne, G. Bertrand, R. Jazzar, M. Mauduit, ACS Catal. 2023, 13, 6195–6202;
- 2mD. S. Weinberger, N. Amin Sk, K. C. Mondal, M. Melaimi, G. Bertrand, A. C. Stückl, H. W. Roesky, B. Dittrich, S. Demeshko, B. Schwederski, W. Kaim, P. Jerabek, G. Frenking, J. Am. Chem. Soc. 2014, 136, 6235–6238.
- 3
- 3aD. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389–399;
- 3bH. Song, Y. Kim, J. Park, K. Kim, E. Lee, Synlett 2016, 27, 477–485;
- 3cH. Song, E. Lee, Chem. Asian J. 2021, 16, 2421–2425;
- 3dY. Kim, J. E. Byeon, G. Y. Jeong, S. S. Kim, H. Song, E. Lee, J. Am. Chem. Soc. 2021, 143, 8527–8532;
- 3eE. Pietrasiak, E. Lee, Synlett 2020, 31, 1349–1360;
- 3fJ. Back, J. Park, Y. Kim, H. Kang, Y. Kim, M. J. Park, K. Kim, E. Lee, J. Am. Chem. Soc. 2017, 139, 15300–15303;
- 3gH. Song, Y. Kim, J. Park, Y. H. Ko, K. Kim, E. Lee, Eur. J. Org. Chem. 2017, 1231–1235;
- 3hY. Kim, E. Lee, Chem. Commun. 2016, 52, 10922–10925;
- 3iS. C. Sau, P. K. Hota, S. K. Mandal, M. Soleilhavoup, G. Bertrand, Chem. Soc. Rev. 2020, 49, 1233–1252.
- 4
- 4aV. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller, G. Bertrand, Angew. Chem. Int. Ed. 2006, 45, 3488–3491;
- 4bT. W. Hudnall, C. W. Bielawski, J. Am. Chem. Soc. 2009, 131, 16039–16041;
- 4cH. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W. Tate, A. Vargas, Q. Ye, Nature 2015, 522, 327–330.
- 5T. Chu, G. I. Nikonov, Chem. Rev. 2018, 118, 3608–3680.
- 6D. R. Tolentino, S. E. Neale, C. J. Isaac, S. A. Macgregor, M. K. Whittlesey, R. Jazzar, G. Bertrand, J. Am. Chem. Soc. 2019, 141, 9823–9826.
- 7J. L. Peltier, E. Tomas-Mendivil, D. R. Tolentino, M. M. Hansmann, R. Jazzar, G. Bertrand, J. Am. Chem. Soc. 2020, 142, 18336–18340.
- 8J. Park, H. Song, Y. Kim, B. Eun, Y. Kim, D. Y. Bae, S. Park, Y. M. Rhee, W. J. Kim, K. Kim, E. Lee, J. Am. Chem. Soc. 2015, 137, 4642–4645.
- 9
- 9aW. B. Sharp, P. Legzdins, B. O. Patrick, J. Am. Chem. Soc. 2001, 123, 8143–8144;
- 9bY. Jiang, W. Huang, H. W. Schmalle, O. Blacque, T. Fox, H. Berke, Organometallics 2013, 32, 7043–7052;
- 9cE. G. Abucayon, R. L. Khade, D. R. Powell, Y. Zhang, G. B. Richter-Addo, J. Am. Chem. Soc. 2018, 140, 4204–4207.
- 10
- 10aY. Kim, K. Kim, E. Lee, Angew. Chem. Int. Ed. 2018, 57, 262–265;
- 10bY. Kim, E. Lee, Chem. Commun. 2018, 54, 6824–6827.
- 11
- 11aI. B. Krylov, S. A. Paveliev, A. S. Budnikov, A. O. Terent'ev, Beilstein J. Org. Chem. 2020, 16, 1234–1276;
- 11bK. A. Rykaczewski, E. R. Wearing, D. E. Blackmun, C. S. Schindler, Nat. Synth. 2022, 1, 24–36;
- 11cD. Leifert, A. Studer, Chem. Rev. 2023, 123, 10302–10380.
- 12D. D. Thomas, L. A. Ridnour, J. S. Isenberg, W. Flores-Santana, C. H. Switzer, S. Donzelli, P. Hussain, C. Vecoli, N. Paolocci, S. Ambs, C. A. Colton, C. C. Harris, D. D. Roberts, D. A. Wink, Free Radical Biol. Med. 2008, 45, 18–31.
- 13
- 13aM. R. Kumar, J. M. Fukuto, K. M. Miranda, P. J. Farmer, Inorg. Chem. 2010, 49, 6283–6292;
- 13bA. C. Montenegro, V. T. Amorebieta, L. D. Slep, D. F. Martin, F. Roncaroli, D. H. Murgida, S. E. Bari, J. A. Olabe, Angew. Chem. Int. Ed. 2009, 48, 4213–4216;
- 13cM. H. Rahman, M. D. Ryan, Inorg. Chem. 2017, 56, 3302–3309.
- 14
- 14aK. M. Miranda, Coord. Chem. Rev. 2005, 249, 433–455;
- 14bB. A. Averill, Chem. Rev. 1996, 96, 2951–2964.
- 15
- 15aR. Lin, P. J. Farmer, J. Am. Chem. Soc. 2000, 122, 2393–2394;
- 15bF. Sulc, C. E. Immoos, D. Pervitsky, P. J. Farmer, J. Am. Chem. Soc. 2004, 126, 1096–1101.
- 16
- 16aN. Lehnert, V. K. Praneeth, F. Paulat, J. Comput. Chem. 2006, 27, 1338–1351;
- 16bA. Daiber, T. Nauser, N. Takaya, T. Kudo, P. Weber, C. Hultschig, H. Shoun, V. Ullrich, J. Inorg. Biochem. 2002, 88, 343–352.
- 17
- 17aJ. S. Stamler, D. J. Singel, J. Loscalzo, Science 1992, 258, 1898–1902;
- 17bJ. A. McCleverty, Chem. Rev. 2004, 104, 403–418;
- 17cI. M. Wasser, S. de Vries, P. Moenne-Loccoz, I. Schroder, K. D. Karlin, Chem. Rev. 2002, 102, 1201–1234.
- 18J. H. Enemark, R. D. Feltham, Coord. Chem. Rev. 1974, 13, 339–406.
- 19
- 19aC. Hauser, T. Glaser, E. Bill, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 2000, 122, 4352–4365;
- 19bR. G. Serres, C. A. Grapperhaus, E. Bothe, E. Bill, T. Weyhermuller, F. Neese, K. Wieghardt, J. Am. Chem. Soc. 2004, 126, 5138–5153;
- 19cA. L. Speelman, C. J. White, B. Zhang, E. E. Alp, J. Zhao, M. Hu, C. Krebs, J. Penner-Hahn, N. Lehnert, J. Am. Chem. Soc. 2018, 140, 11341–11359;
- 19dC. Kupper, J. A. Rees, S. Dechert, S. DeBeer, F. Meyer, J. Am. Chem. Soc. 2016, 138, 7888–7898;
- 19eM. J. Chalkley, J. C. Peters, Angew. Chem. Int. Ed. 2016, 55, 11995–11998;
- 19fM. Keilwerth, J. Hohenberger, F. W. Heinemann, J. Sutter, A. Scheurer, H. Fang, E. Bill, F. Neese, S. Ye, K. Meyer, J. Am. Chem. Soc. 2019, 141, 17217–17235.
- 20
- 20aM. M. M. Kuypers, H. K. Marchant, B. Kartal, Nat. Rev. Microbiol. 2018, 16, 263–276;
- 20bF. Roncaroli, M. Videla, L. D. Slep, J. A. Olabe, Coord. Chem. Rev. 2007, 251, 1903–1930.
- 21
- 21aT. C. Berto, A. L. Speelman, S. Zheng, N. Lehnert, Coord. Chem. Rev. 2013, 257, 244–259;
- 21bA. L. Speelman, N. Lehnert, Acc. Chem. Res. 2014, 47, 1106–1116.
- 22O. Einsle, A. Messerschmidt, R. Huber, P. M. Kroneck, F. Neese, J. Am. Chem. Soc. 2002, 124, 11737–11745.
- 23Deposition numbers 2251077 (for 2BF4), 2251078 (for 3), 2251079 (for [5K]4), 2251080 (for [5Li]3), 2251081 (for [5Li]2), and 2296195 (for 5K(18-cr-6)) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 24
- 24aJ. L. Atwood, F. Hamada, K. D. Robinson, G. W. Orr, R. L. Vincent, Nature 1991, 349, 683–684;
- 24bG. A. Jeffrey, Crystallogr. Rev. 2003, 9, 135–176.
- 25L. Balloch, A. M. Drummond, P. Garcia-Alvarez, D. V. Graham, A. R. Kennedy, J. Klett, R. E. Mulvey, C. T. O'Hara, P. J. Rodger, I. D. Rushworth, Inorg. Chem. 2009, 48, 6934–6944.
- 26D. R. Armstrong, W. Clegg, S. M. Hodgson, R. Snaith, A. E. H. Wheatley, J. Organomet. Chem. 1998, 550, 233–240.
- 27V. D. Sen, V. A. Golubev, J. Phys. Org. Chem. 2009, 22, 138–143.
- 28Y. Kang, J. Kim, J. Park, Y. M. Lee, G. Saravanakumar, K. M. Park, W. Choi, K. Kim, E. Lee, C. Kim, W. J. Kim, Biomaterials 2019, 217, 119297.
- 29A. K. Patra, K. S. Dube, B. C. Sanders, G. C. Papaefthymiou, J. Conradie, A. Ghosh, T. C. Harrop, Chem. Sci. 2012, 3, 364–369.
- 30J.-X. Zhang, F. K. Sheong, Z. Lin, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2020, 10, e1469.
- 31S. Hong, J. J. Yan, D. G. Karmalkar, K. D. Sutherlin, J. Kim, Y.-M. Lee, Y. Goo, P. K. Mascharak, B. Hedman, K. O. Hodgson, K. D. Karlin, E. I. Solomon, W. Nam, Chem. Sci. 2018, 9, 6952–6960.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.