Advancement of Electrochemical Thermoelectric Conversion with Molecular Technology
Prof. Dr. Hongyao Zhou
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorHirotaka Inoue
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorMizuha Ujita
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Teppei Yamada
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorProf. Dr. Hongyao Zhou
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorHirotaka Inoue
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorMizuha Ujita
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Teppei Yamada
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorAbstract
Thermocells are a thermoelectric conversion technology that utilizes the shift in an electrochemical equilibrium arising from a temperature difference. This technology has a long history; however, its low conversion efficiency impedes its practical usage. Recently, an increasing number of reports have shown drastic improvements in thermoelectric conversion efficiency, and thermocells could arguably represent an alternative to solid thermoelectric devices. In this Minireview, we regard thermocells as molecular systems consisting of successive molecular processes responding to a temperature change to achieve energy generation. Various molecular technologies have been applied to thermocells in recent years, and could stimulate diverse research fields, including supramolecular chemistry, physical chemistry, electrochemistry, and solid-state ionics. These research approaches will also provide novel methods for achieving a sustainable society in the future.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202213449-sup-0001-misc_information.pdf776.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Luberti, R. Gowans, P. Finn, G. Santori, Energy 2022, 238, 121967.
- 2Thermal Management Materials and Technology Research Association, Survey of Waste Heat Emission from Industrial Sectors (Japanese), 2019.
- 3J. Li, X. Peng, Z. Yang, S. Hu, Y. Duan, Appl. Energy 2022, 311, 118609.
- 4X. L. Shi, J. Zou, Z. G. Chen, Chem. Rev. 2020, 120, 7399–7515.
- 5Y. Zhao, L. Liu, F. Zhang, C. Di, D. Zhu, SmartMat 2021, 2, 426–445.
- 6M. F. Dupont, D. R. MacFarlane, J. M. Pringle, Chem. Commun. 2017, 53, 6288–6302.
- 7H. Zhou, T. Yamada, N. Kimizuka, Bull. Chem. Soc. Jpn. 2021, 94, 1525–1546.
- 8W. Li, J. Ma, J. Qiu, S. Wang, Mater Today Energy 2022, 27, 101032.
- 9J. T. Hupp, M. J. Weaver, Inorg. Chem. 1984, 23, 3639–3644.
- 10M. A. Lazar, D. Al-Masri, D. R. MacFarlane, J. M. Pringle, Phys. Chem. Chem. Phys. 2016, 18, 1404–1410.
- 11T. J. Abraham, D. R. MacFarlane, J. M. Pringle, Energy Environ. Sci. 2013, 6, 2639–2645.
- 12N. F. Antariksa, T. Yamada, N. Kimizuka, Sci. Rep. 2021, 11, 11929.
- 13T. Kim, J. S. Lee, G. Lee, H. Yoon, J. Yoon, T. J. Kang, Y. H. Kim, Nano Energy 2017, 31, 160–167.
- 14H. Zhou, T. Yamada, N. Kimizuka, J. Am. Chem. Soc. 2016, 138, 10502–10507.
- 15Y. Liang, H. Zhou, T. Yamada, N. Kimizuka, Bull. Chem. Soc. Jpn. 2019, 92, 1142–1147.
- 16H. Inoue, Y. Liang, T. Yamada, N. Kimizuka, Chem. Commun. 2020, 56, 7013–7016.
- 17B. Yu, J. Duan, H. Cong, W. Xie, R. Liu, X. Zhuang, H. Wang, B. Qi, M. Xu, Z. L. Wang, J. Zhou, Science 2020, 370, 342–346.
- 18R. Iwami, T. Yamada, N. Kimizuka, Chem. Lett. 2020, 49, 1197–1200.
- 19H. Zhou, P. Liu, ACS Appl. Energy Mater. 2018, 1, 1424–1428.
- 20B. Guo, Y. Hoshino, F. Gao, K. Hayashi, Y. Miura, N. Kimizuka, T. Yamada, J. Am. Chem. Soc. 2020, 142, 17318–17322.
- 21Y. Liang, J. K.-H. Hui, M. A. Morikawa, H. Inoue, T. Yamada, N. Kimizuka, ACS Appl. Energy Mater. 2021, 4, 5326–5331.
- 22T. Wartanowicz, Adv. Energy Convers. 1964, 4, 149–158.
- 23H. P. Meissner, D. C. White, G. D. Uhlrich, Adv. Energy Convers. 1965, 5, 205–216.
- 24B. Burrows, J. Electrochem. Soc. 1976, 123, 154–159.
- 25Y. Mua, T. I. Quickenden, J. Electrochem. Soc. 1996, 143, 2558–2564.
- 26T. I. Quickenden, C. F. Vernon, Sol. Energy 1986, 36, 63–72.
- 27T. Ikeshoji, Bull. Chem. Soc. Jpn. 1987, 60, 1505–1514.
- 28S. K. Ratkje, T. Ikeshoji, K. Syverud, J. Electrochem. Soc. 1990, 137, 2088–2095.
- 29M. A. Trosheva, M. A. Buckingham, L. Aldous, Chem. Sci. 2022, 13, 4984–4998.
- 30H. Im, T. Kim, H. Song, J. Choi, J. S. Park, R. Ovalle-Robles, H. D. Yang, K. D. Kihm, R. H. Baughman, H. H. Lee, T. J. Kang, Y. H. Kim, Nat. Commun. 2016, 7, 10600.
- 31L. Zhang, T. Kim, N. Li, T. J. Kang, J. Chen, J. M. Pringle, M. Zhang, A. H. Kazim, S. Fang, C. Haines, D. Al-Masri, B. A. Cola, J. M. Razal, J. Di, S. Beirne, D. R. MacFarlane, A. Gonzalez-Martin, S. Mathew, Y. H. Kim, G. Wallace, R. H. Baughman, Adv. Mater. 2017, 29, 1605652.
- 32L. Jiang, K. Kirihara, V. Nandal, K. Seki, M. Mukaida, S. Horike, Q. Wei, ACS Appl. Mater. Interfaces 2022, 14, 22921–22928.
- 33B. Yu, H. Xiao, Y. Zeng, S. Liu, D. Wu, P. Liu, J. Guo, W. Xie, J. Duan, J. Zhou, Nano Energy 2022, 93, 106795.
- 34P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng, J. Zhou, Angew. Chem. Int. Ed. 2016, 55, 12050–12053; Angew. Chem. 2016, 128, 12229–12232.
- 35P. F. Salazar, S. Kumar, B. A. Cola, J. Appl. Electrochem. 2014, 44, 325–336.
- 36A. H. Kazim, A. S. Booeshaghi, S. T. Stephens, B. A. Cola, Sustainable Energy Fuels 2017, 1, 1381–1389.
- 37Y. Ikeda, Y. Cho, Y. Murakami, Sustainable Energy Fuels 2021, 5, 5967–5974.
- 38Y. Ikeda, K. Fukui, Y. Murakami, Phys. Chem. Chem. Phys. 2019, 21, 25838–25848.
- 39C. Yang, G. Nikiforidis, J. Y. Park, J. Choi, Y. Luo, L. Zhang, S.-C. Wang, Y.-T. Chan, J. Lim, Z. Hou, M.-H. Baik, Y. Lee, H. R. Byon, Adv. Energy Mater. 2018, 8, 1702897.
- 40M. A. Buckingham, S. Hammoud, H. Li, C. J. Beale, J. T. Sengel, L. Aldous, Sustainable Energy Fuels 2020, 4, 3388–3399.
- 41T. J. Abraham, D. R. MacFarlane, J. M. Pringle, Chem. Commun. 2011, 47, 6260–6262.
- 42Y. Liang, J. K. H. Hui, T. Yamada, N. Kimizuka, ChemSusChem 2019, 12, 4014–4020.
- 43T. Kobayashi, T. Yamada, M. Tadokoro, N. Kimizuka, Chem. Eur. J. 2021, 27, 4287–4290.
- 44E. L. Yee, R. J. Cave, K. L. Guyer, P. D. Tyma, M. J. Weaver, J. Am. Chem. Soc. 1979, 101, 1131–1137.
- 45S. Sahami, M. J. Weaver, J. Electroanal. Chem. 1981, 122, 155–170.
- 46S. Sahami, M. J. Weaver, J. Electroanal. Chem. 1981, 122, 171–181.
- 47U. Mayer, V. Gutmann, W. Gerger, The Acceptor Number-A Quantitative Empirical Parameter for the Electrophilic Properties of Solvents, Springer-Verlag, Berlin, 1975.
10.1007/BF00913599 Google Scholar
- 48R. W. Hogue, S. Singh, S. Brooker, Chem. Soc. Rev. 2018, 47, 7303–7338.
- 49B. Huang, S. Muy, S. Feng, Y. Katayama, Y. C. Lu, G. Chen, Y. Shao-Horn, Phys. Chem. Chem. Phys. 2018, 20, 15680–15686.
- 50F. Hofmeister, Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260.
10.1007/BF01918191 Google Scholar
- 51A. Salis, B. W. Ninham, Chem. Soc. Rev. 2014, 43, 7358–7377.
- 52B. Kang, H. Tang, Z. Zhao, S. Song, ACS Omega 2020, 5, 6229–6239.
- 53N. Schwierz, D. Horinek, U. Sivan, R. R. Netz, Curr. Opin. Colloid Interface Sci. 2016, 23, 10–18.
- 54M. Tadokoro, H. Hosoda, T. Inoue, A. Murayama, K. Noguchi, A. Iioka, R. Nishimura, M. Itoh, T. Sugaya, H. Kamebuchi, M. A. Haga, Inorg. Chem. 2017, 56, 8513–8526.
- 55A. Gunawan, C.-H. Lin, D. A. Buttry, V. Mujica, R. A. Taylor, R. S. Prasher, P. E. Phelan, Nanoscale Microscale Thermophys. Eng. 2013, 17, 304–323.
- 56M. Sadakiyo, S. Hata, T. Fukushima, G. Juhász, M. Yamauchi, Phys. Chem. Chem. Phys. 2019, 21, 5882–5889.
- 57H. Eguchi, T. Kobayashi, T. Yamada, D. S. R. Rocabado, T. Ishimoto, M. Yamauchi, Sci. Rep. 2021, 11, 13929.
- 58M. J. González, C. T. Hable, M. S. Wrighton, J. Phys. Chem. B 1998, 102, 9881–9890.
- 59S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081–10206.
- 60I. Aprahamian, ACS Cent. Sci. 2020, 6, 347–358.
- 61Y. Feng, M. Ovalle, J. S. W. Seale, C. K. Lee, D. J. Kim, R. D. Astumian, J. F. Stoddart, J. Am. Chem. Soc. 2021, 143, 5569–5591.
- 62S. Amano, S. D. P. Fielden, D. A. Leigh, Nature 2021, 594, 529–534.
- 63M. Baroncini, S. Silvi, A. Credi, Chem. Rev. 2020, 120, 200–268.
- 64L. Zheng, H. Zhao, Y. Han, H. Qian, L. Vukovic, J. Mecinović, P. Král, W. T. S. Huck, Nat. Chem. 2019, 11, 359–366.
- 65S. Kassem, A. T. L. Lee, D. A. Leigh, A. Markevicius, J. Solà, Nat. Chem. 2016, 8, 138–143.
- 66L. A. Freiburger, K. Auclair, A. K. Mittermaier, ChemBioChem 2009, 10, 2871–2873.
- 67S. Slavkovic, Y. Zhu, Z. R. Churcher, A. A. Shoara, A. E. Johnson, P. E. Johnson, Sci. Rep. 2020, 10, 18944.
- 68Y. Liang, T. Yamada, H. Zhou, N. Kimizuka, Chem. Sci. 2019, 10, 773–780.
- 69H. Zhou, T. Yamada, N. Kimizuka, Sustainable Energy Fuels 2018, 2, 472–478.
- 70Y. Han, J. Zhang, R. Hu, D. Xu, Sci. Adv. 2022, 8, 5318.
- 71J. Duan, B. Yu, K. Liu, J. Li, P. Yang, W. Xie, G. Xue, R. Liu, H. Wang, J. Zhou, Nano Energy 2019, 57, 473–479.
- 72T. Yamada, X. Zou, Y. Liang, N. Kimizuka, Polym. J. 2018, 50, 771–774.
- 73K. Dušek, M. Dušková-Smrčková, Gels 2020, 6, 22.
- 74M. Karg, A. Pich, T. Hellweg, T. Hoare, L. A. Lyon, J. J. Crassous, D. Suzuki, R. A. Gumerov, S. Schneider, I. I. Potemkin, W. Richtering, Langmuir 2019, 35, 6231–6255.
- 75Y. Hoshino, R. C. Ohashi, Y. Miura, Adv. Mater. 2014, 26, 3718–3723.
- 76D. Al-Masri, M. Dupont, R. Yunis, D. R. MacFarlane, J. M. Pringle, Electrochim. Acta 2018, 269, 714–723.
- 77A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo, J. M. Pringle, Aust. J. Chem. 2019, 72, 709–716.
- 78A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo, J. M. Pringle, Electrochim. Acta 2019, 297, 669–675.
- 79P. F. Salazar, S. T. Stephens, A. H. Kazim, J. M. Pringle, B. A. Cola, J. Mater. Chem. A 2014, 2, 20676–20682.
- 80A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo, J. M. Pringle, Sustainable Energy Fuels 2018, 2, 1806–1812.
- 81H. Wang, X. Zhuang, W. Xie, H. Jin, R. Liu, B. Yu, J. Duan, L. Huang, J. Zhou, Cell Rep. Phys. Sci. 2022, 3, 100737.
- 82G. Li, D. Dong, G. Hong, L. Yan, X. Zhang, W. Song, Adv. Mater. 2019, 31, 1901403.
- 83J. Duan, G. Feng, B. Yu, J. Li, M. Chen, P. Yang, J. Feng, K. Liu, J. Zhou, Nat. Commun. 2018, 9, 5146.
- 84S. Asai, J. H. Lee, A. Yabuki, S. Kang, Sustainable Energy Fuels 2022, 6, 1940–1944.
- 85K. Kim, S. Hwang, H. Lee, Electrochim. Acta 2020, 335, 135651.
- 86L. Aldous, J. J. Black, M. C. Elias, B. Gélinas, D. Rochefort, Phys. Chem. Chem. Phys. 2017, 19, 24255–24263.
- 87M. A. Buckingham, K. Laws, H. Li, Y. Kuang, L. Aldous, Cell Rep. Phys. Sci. 2021, 2, 100510.
- 88K. Shindo, M. Arakawa, T. Hirai, J. Power Sources 1998, 70, 228–234.
- 89H. Ma, X. Wang, Y. Peng, H. Peng, M. Hu, L. Xiao, G. Wang, J. Lu, L. Zhuang, ACS Energy Lett. 2019, 4, 1810–1815.
- 90J. H. Kim, J. H. Lee, R. R. Palem, M.-S. Suh, H. H. Lee, T. J. Kang, Sci. Rep. 2019, 9, 8706.
- 91K. Kim, J. Kang, H. Lee, Chem. Eng. J. 2021, 426, 131797.
- 92D. Roy, W. L. A. Brooks, B. S. Sumerlin, Chem. Soc. Rev. 2013, 42, 7214.
- 93J. Liu, Y. Yao, S. Xiao, X. Gu, J. Phys. D 2018, 51, 123001.
- 94R. Tamamushi, J. Electroanal. Chem. 1975, 65, 263–273.
- 95I. S. McKay, L. Y. Kunz, A. Majumdar, Sci. Rep. 2019, 9, 13945.
- 96A. Rajan, I. S. McKay, S. K. Yee, Nat. Energy 2022, 7, 320–328.
- 97T. Richards, Zeitschrift fur physikalische Chemie 1897, 24, 39–54.
10.1515/zpch-1897-2405 Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.