Single-Phase Formation of Rh2O3 Nanoparticles on h-BN Support for Highly Controlled Methane Partial Oxidation to Syngas
Younhwa Kim
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorSungsu Kang
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826 Republic of Korea
Search for more papers by this authorDohun Kang
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorKyung Rok Lee
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorDr. Chyan Kyung Song
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorJongbaek Sung
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorJi Soo Kim
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorProf. Hyunjoo Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Jungwon Park
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Jongheop Yi
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorYounhwa Kim
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorSungsu Kang
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826 Republic of Korea
Search for more papers by this authorDohun Kang
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorKyung Rok Lee
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorDr. Chyan Kyung Song
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorJongbaek Sung
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorJi Soo Kim
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorProf. Hyunjoo Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Jungwon Park
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Jongheop Yi
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorAbstract
Single-phase formation of active metal oxides on supports has been vigorously pursued in many catalytic applications to suppress undesired reactions and to determine direct structure-property relationships. However, this is difficult to achieve in nanoscale range because the effect of non-uniform metal-support interfaces becomes dominant in the overall catalyst growth, leading to the nucleation of various metastable oxides. Herein, we develop a supported single-phase corundum-Rh2O3(I) nanocatalyst by utilizing controlled interaction between metal oxide and h-BN support. Atomic-resolution electron microscopy and first-principle calculation reveal that single-phase formation occurs via uniform and preferential attachment of Rh2O3(I) (110) seed planes on well-defined h-BN surface after decomposition of rhodium precursor. By utilizing the Rh/h-BN catalyst in methane partial oxidation, syngas is successfully produced solely following the direct route with keeping a H2/CO ratio of 2, which makes it ideal for most downstream chemical processes.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110292-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. M. Ligthart, R. A. van Santen, E. J. Hensen, Angew. Chem. Int. Ed. 2011, 50, 5306–5310; Angew. Chem. 2011, 123, 5418–5422;
- 1bH. Asakura, S. Hosokawa, T. Ina, K. Kato, K. Nitta, K. Uera, T. Uruga, H. Miura, T. Shishido, J. Ohyama, J. Am. Chem. Soc. 2018, 140, 176–184;
- 1cC. Italiano, N. Luchters, L. Pino, J. Fletcher, S. Specchia, J. Fletcher, A. Vita, Int. J. Hydrogen Energy 2018, 43, 11755–11765;
- 1dC. Au, H. Wang, J. Catal. 1997, 167, 337–345;
- 1eE. Ruckenstein, H. Wang, J. Catal. 2000, 190, 32–38.
- 2P. Munnik, P. E. de Jongh, K. P. de Jong, Chem. Rev. 2015, 115, 6687–6718.
- 3
- 3aV. Esposito, I. E. Castelli, Adv. Mater. Interfaces 2020, 7, 1902090;
- 3bZ.-c. Zhang, B. Xu, X. Wang, Chem. Soc. Rev. 2014, 43, 7870–7886;
- 3cA. Y. Stakheev, L. Kustov, Appl. Catal. A 1999, 188, 3–35.
- 4H. Miyata, W. Kubo, A. Sakai, Y. Ishida, T. Noma, M. Watanabe, A. Bendavid, P. J. Martin, J. Am. Chem. Soc. 2010, 132, 9414–9419.
- 5A. L. Schoenhalz, G. M. Dalpian, J. Nanopart. Res. 2012, 14, 1162.
- 6J. Li, Z. Liu, D. A. Cullen, W. Hu, J. Huang, L. Yao, Z. Peng, P. Liao, R. Wang, ACS Catal. 2019, 9, 11088–11103.
- 7
- 7aZ. Weng-Sieh, R. Gronsky, A. T. Bell, J. Catal. 1998, 174, 22–33;
- 7bZ. Weng-Sieh, R. Gronsky, A. T. Bell, J. Catal. 1997, 170, 62–74;
- 7cC.-P. Hwang, C.-T. Yeh, Q. Zhu, Catal. Today 1999, 51, 93–101.
- 8
- 8aC. Asokan, Y. Yang, A. Dang, A. B. Getsoian, P. Christopher, ACS Catal. 2020, 10, 5217–5222;
- 8bR. Duarte, F. Krumeich, J. A. van Bokhoven, ACS Catal. 2014, 4, 1279–1286.
- 9P. Mohapatra, S. Shaw, D. Mendivelso-Perez, J. M. Bobbitt, T. F. Silva, F. Naab, B. Yuan, X. Tian, E. A. Smith, L. Cademartiri, Nat. Commun. 2017, 8, 1–7.
- 10L. M. Rossi, J. L. Fiorio, M. A. Garcia, C. P. Ferraz, Dalton Trans. 2018, 47, 5889–5915.
- 11S. Singh, R. Kumar, H. D. Setiabudi, S. Nanda, D.-V. N. Vo, Appl. Catal. A 2018, 559, 57–74.
- 12
- 12aF. Yin, S. Ji, P. Wu, F. Zhao, C. Li, J. Catal. 2008, 257, 108–116;
- 12bI. Yuranov, L. Kiwi-Minsker, P. Buffat, A. Renken, Chem. Mater. 2004, 16, 760–761.
- 13J. Yang, K. Kim, Y. Lee, K. Kim, W. C. Lee, J. Park, FlatChem 2017, 5, 50–68.
- 14
- 14aL. Xiaowei, R. Jean-Charles, Y. Suyuan, Nucl. Eng. Des. 2004, 227, 273–280;
- 14bK. H. Hu, X. G. Hu, X. J. Sun, Appl. Surf. Sci. 2010, 256, 2517–2523.
- 15H. Ma, H. Wang, P. C. Burns, B. K. McNamara, E. C. Buck, C. Na, J. Nucl. Mater. 2016, 475, 113–122.
- 16
- 16aQ. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Chem. Soc. Rev. 2016, 45, 3989–4012;
- 16bZ. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, Nat. Commun. 2013, 4, 1–8.
- 17
- 17aJ. Dong, Q. Fu, H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, J. Am. Chem. Soc. 2020, 142, 17167–17174;
- 17bZ. Zhang, J. Su, A. S. Matias, M. Gordon, Y.-S. Liu, J. Guo, C. Song, C. Dun, D. Prendergast, G. A. Somorjai, Proc. Natl. Acad. Sci. USA 2020, 117, 29442–29452;
- 17cY.-R. Liu, X. Li, W.-M. Liao, A.-P. Jia, Y.-J. Wang, M.-F. Luo, J.-Q. Lu, ACS Catal. 2019, 9, 1472–1481.
- 18
- 18aM. Kim, S. W. Moon, G. Kim, S. I. Yoon, K. C. Kim, S. K. Min, H. S. Shin, Chem. Mater. 2020, 32, 4584–4590;
- 18bW. Auwärter, Surf. Sci. Rep. 2019, 74, 1–95;
- 18cM. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, J. Osterwalder, Science 2004, 303, 217–220;
- 18dA. Gibb, N. Alem, A. Zettl, Phys. Status Solidi B 2013, 250, 2727–2731.
- 19J. G. Diaz, Y. Ding, R. Koitz, A. P. Seitsonen, M. Iannuzzi, J. Hutter, Theor. Chem. Acc. 2013, 132, 1350.
- 20
- 20aB. C. Enger, R. Lødeng, A. Holmen, Appl. Catal. A 2008, 346, 1–27;
- 20bP. Arku, B. Regmi, A. Dutta, Chem. Eng. Res. Des. 2018, 136, 385–402.
- 21
- 21aP. Torniainen, X. Chu, L. Schmidt, J. Catal. 1994, 146, 1–10;
- 21bD. Hickman, L. D. Schmidt, J. Catal. 1992, 138, 267–282.
- 22
- 22aJ. Slaa, R. Berger, G. Marin, Catal. Lett. 1997, 43, 63–70;
- 22bI. Tavazzi, A. Beretta, G. Groppi, P. Forzatti, J. Catal. 2006, 241, 1–13.
- 23C. Wong, R. W. McCabe, J. Catal. 1987, 107, 535–547.
- 24W. Z. Weng, C. R. Luo, J. J. Huang, Y. Y. Liao, H. L. Wan, Top. Catal. 2003, 22, 87–93.
- 25Y. Wang, Z. Song, D. Ma, H. Luo, D. Liang, X. Bao, J. Mol. Catal. A 1999, 149, 51–61.
- 26
- 26aJ. E. Johns, J. M. Alaboson, S. Patwardhan, C. R. Ryder, G. C. Schatz, M. C. Hersam, J. Am. Chem. Soc. 2013, 135, 18121–18125;
- 26bA. Cavallin, M. Pozzo, C. Africh, A. Baraldi, E. Vesselli, C. Dri, G. Comelli, R. Larciprete, P. Lacovig, S. Lizzit, ACS Nano 2012, 6, 3034–3043.
- 27M. Xu, S. He, H. Chen, G. Cui, L. Zheng, B. Wang, M. Wei, ACS Catal. 2017, 7, 7600–7609.
- 28J. Ohyama, A. Yamamoto, K. Teramura, T. Shishido, T. Tanaka, ACS Catal. 2011, 1, 187–192.
- 29Q. Lin, K.-i. Shimizu, A. Satsuma, Appl. Catal. A 2012, 419, 142–147.
- 30T. Bugrova, T. Kharlamova, V. Svetlichnyi, A. Savel'eva, M. Salaev, G. Mamontov, Catal. Today 2021, 375, 36–47.
- 31T. Song, J. Dong, R. Li, X. Xu, M. Hiroaki, B. Yang, R. Zhang, Y. Bai, H. Xin, L. Lin, J. Phys. Chem. Lett. 2021, 12, 4187–4194.
- 32V. A. Kondratenko, C. Berger-Karin, E. V. Kondratenko, ACS Catal. 2014, 4, 3136–3144.
- 33
- 33aY. Boucouvalas, Z. Zhang, X. E. Verykios, Catal. Lett. 1996, 40, 189–195;
- 33bD. Dissanayake, M. P. Rosynek, K. C. Kharas, J. H. Lunsford, J. Catal. 1991, 132, 117–127.
- 34E. Mallens, J. Hoebink, G. Marin, J. Catal. 1997, 167, 43–56.
- 35M. D. Salazar-Villalpando, D. A. Berry, T. H. Gardner, Int. J. Hydrogen Energy 2008, 33, 2695–2703.
- 36
- 36aJ.-D. Grunwaldt, S. Hannemann, C. G. Schroer, A. Baiker, J. Phys. Chem. B 2006, 110, 8674–8680;
- 36bZ. Tian, O. Dewaele, G. B. Marin, Catal. Lett. 1999, 57, 9–17.
- 37A. Mishra, R. Dudek, A. Gaffney, D. Ding, F. Li, Catal. Today DOI: 10.1016/j.cattod.2019.09.010.
- 38
- 38aC. T. Williams, K.-Y. Chen, C. G. Takoudis, M. J. Weaver, J. Phys. Chem. B 1998, 102, 4785–4794;
- 38bA. A. Tolia, R. Smiley, W. Delgass, C. G. Takoudis, M. J. Weaver, J. Catal. 1994, 150, 56–70.
- 39K. Jin, J. H. Maalouf, N. Lazouski, N. Corbin, D. Yang, K. Manthiram, J. Am. Chem. Soc. 2019, 141, 6413–6418.
- 40D. Barreca, G. Carraro, V. Gombac, A. Gasparotto, C. Maccato, P. Fornasiero, E. Tondello, Adv. Funct. Mater. 2011, 21, 2611–2623.
- 41
- 41aY. Kim, T. Y. Kim, C. K. Song, K. R. Lee, S. Bae, H. Park, D. Yun, Y. S. Yun, I. Nam, J. Park, Nano Energy 2020, 105704;
- 41bT. A. Le, M. S. Kim, S. H. Lee, T. W. Kim, E. D. Park, Catal. Today 2017, 293, 89–96.
- 42
- 42aT. W. van Deelen, C. H. Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955;
- 42bH. Ha, S. Yoon, K. An, H. Y. Kim, ACS Catal. 2018, 8, 11491–11501;
- 42cK. Murata, Y. Mahara, J. Ohyama, Y. Yamamoto, S. Arai, A. Satsuma, Angew. Chem. Int. Ed. 2017, 56, 15993–15997; Angew. Chem. 2017, 129, 16209–16213.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.