Crystal-to-Gel Transformation Stimulated by a Solid-State E→Z Photoisomerization
Dr. Fei Tong
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorDr. Shaolong Chen
Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521 USA
Search for more papers by this authorZhiwei Li
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorMingyue Liu
Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Rabih O. Al-Kaysi
College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, 11426 Kingdom of Saudi Arabia
Search for more papers by this authorProf. Umar Mohideen
Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521 USA
Search for more papers by this authorProf. Yadong Yin
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Christopher J. Bardeen
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorDr. Fei Tong
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorDr. Shaolong Chen
Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521 USA
Search for more papers by this authorZhiwei Li
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorMingyue Liu
Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Rabih O. Al-Kaysi
College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, 11426 Kingdom of Saudi Arabia
Search for more papers by this authorProf. Umar Mohideen
Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521 USA
Search for more papers by this authorProf. Yadong Yin
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Christopher J. Bardeen
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521 USA
Search for more papers by this authorAbstract
The molecule (E)-(5-(3-anthracen-9-yl-allylidene)-2,2-dimethyl-[1,3] dioxane-4,6-dione) (E-AYAD) undergoes E→Z photoisomerization. In the solid state, this photoisomerization process can initiate a physical transformation of the crystal that is accompanied by a large volume expansion (ca. 10 times), loss of crystallinity, and growth of large pores. This physical change requires approximately 10 % conversion of the E isomer to the Z isomer and results in a gel-like solid with decreased stiffness that still retains its mechanical integrity. The induced porosity allows the expanding gel to engulf superparamagnetic nanoparticles from the surrounding liquid. The trapped superparamagnetic nanoparticles impart a magnetic susceptibility to the gel, allowing it to be moved by a magnetic field. The photoinduced phase transition, starting with a compact crystalline solid instead of a dilute solution, provides a new route for in situ production of functional porous materials.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201907454-sup-0001-misc_information.pdf2 MB | Supplementary |
ange201907454-sup-0001-Movie_S1.avi1.7 MB | Supplementary |
ange201907454-sup-0001-Movie_S2.avi4.3 MB | Supplementary |
ange201907454-sup-0001-Movie_S3.avi5.3 MB | Supplementary |
ange201907454-sup-0001-Movie_S4.avi14.4 MB | Supplementary |
ange201907454-sup-0001-Movie_S5.avi14.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. Naumov, S. Chizhik, M. K. Panda, N. K. Nath, E. Boldyreva, Chem. Rev. 2015, 115, 12440–12490;
- 1bJ. M. Abendroth, O. S. Bushuyev, P. S. Weiss, C. J. Barrett, ACS Nano 2015, 9, 7746–7768;
- 1cQ. Yu, B. Aguila, J. Gao, P. Xu, Q. Chen, J. Yan, D. Xing, Y. Chen, P. Cheng, Z. Zhang, S. Ma, Chem. Eur. J. 2019, 25, 5611–5622.
- 2
- 2aN. K. Nath, L. Pejov, S. M. Nichols, C. Hu, N. Saleh, B. Kahr, P. Naumov, J. Am. Chem. Soc. 2014, 136, 2757–2766;
- 2bT. Kim, L. Zhu, L. J. Mueller, C. J. Bardeen, J. Am. Chem. Soc. 2014, 136, 6617–6625;
- 2cT. Kim, L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, ChemPhysChem 2014, 15, 400–414;
- 2dT. J. White, Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work, 1st ed., Wiley, Hoboken, 2017.
10.1002/9781119123279 Google Scholar
- 3
- 3aR. O. Al-Kaysi, A. M. Muller, C. J. Bardeen, J. Am. Chem. Soc. 2006, 128, 15938–15939;
- 3bS. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 2007, 446, 778–781;
- 3cM. Morimoto, M. Irie, J. Am. Chem. Soc. 2010, 132, 14172–14178;
- 3dH. Koshima, N. Ojima, H. Uchimoto, J. Am. Chem. Soc. 2009, 131, 6890–6891;
- 3eH. Koshima, K. Takechi, H. Uchimoto, M. Shiro, D. Hashizume, Chem. Commun. 2011, 47, 11423–11425;
- 3fP. Naumov, J. Kowalik, K. M. Solntsev, A. Baldridge, J.-S. Moon, C. Kranz, L. M. Tolbert, J. Am. Chem. Soc. 2010, 132, 5845–5857;
- 3gR. Medishetty, A. Husain, Z. Bai, T. Runceviski, R. E. Dinnebier, P. Naumov, J. J. Vittal, Angew. Chem. Int. Ed. 2014, 53, 5907–5911; Angew. Chem. 2014, 126, 6017–6021;
- 3hO. S. Bushuyev, A. Tomberg, T. Friscic, C. J. Barrett, J. Am. Chem. Soc. 2013, 135, 12556–12559;
- 3iJ. K. Sun, W. Li, C. Chen, C. X. Ren, D. M. Pan, J. Zhang, Angew. Chem. Int. Ed. 2013, 52, 6653–6657; Angew. Chem. 2013, 125, 6785–6789;
- 3jD. Kitagawa, H. Tsujioka, F. Tong, X. Dong, C. J. Bardeen, S. Kobatake, J. Am. Chem. Soc. 2018, 140, 4208–4212;
- 3kQ. Yu, X. Yang, Y. Chen, K. Yu, J. Gao, Z. Liu, P. Cheng, Z. Zhang, B. Aguila, S. Ma, Angew. Chem. Int. Ed. 2018, 57, 10192–10196; Angew. Chem. 2018, 130, 10349–10353.
- 4T. Kim, M. K. Al-Muhanna, S. D. Al-Suwaidan, R. O. Al-Kaysi, C. J. Bardeen, Angew. Chem. Int. Ed. 2013, 52, 6889–6893; Angew. Chem. 2013, 125, 7027–7031.
- 5F. Tong, M. Liu, R. O. Al-Kaysi, C. J. Bardeen, Langmuir 2018, 34, 1627–1634.
- 6F. Tong, M. Al-Haidar, L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, Chem. Commun. 2019, 55, 3709–3712.
- 7M. J. R. Reddy, P. A. Kumar, U. Srinivas, V. V. Reddy, M. J. R. Reddy, G. V. Rao, V. J. Rao, Indian J. Chem. Sect. B 2007, 46, 1833–1847.
- 8
- 8aG. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647–678;
- 8bV. Ramamurthy, K. Venkatesan, Chem. Rev. 1987, 87, 433–481.
- 9
- 9aM. K. Maurer, I. K. Lednev, S. A. Asher, Adv. Funct. Mater. 2005, 15, 1401–1406;
- 9bJ. Liu, J. Nie, Y. Zhao, Y. He, J. Photochem. Photobiol. A 2010, 211, 20–25.
- 10
- 10aS. Miljanić, L. Frkanec, Z. Meić, M. Žinić, Langmuir 2005, 21, 2754–2760;
- 10bM. Akazawa, K. Uchida, J. J. D. de Jong, J. Areephong, M. Stuart, G. Caroli, W. R. Browne, B. L. Feringa, Org. Biomol. Chem. 2008, 6, 1544–1547;
- 10cY.-L. Zhao, J. F. Stoddart, Langmuir 2009, 25, 8442–8446;
- 10dY. Wu, S. Wu, X. Tian, X. Wang, W. Wu, G. Zou, Q. Zhang, Soft Matter 2011, 7, 716–721.
- 11C. Bernades, M. Carravetta, S. J. Coles, E. R. H. van Eck, H. Meekes, M. E. Minas da Piedade, M. B. Pitak, M. Podmore, T. A. H. de Ruiter, L.-C. Söğütoğlu, R. R. E. Steendam, T. Threlfall, Cryst. Growth Des. 2019, 19, 907–917.
- 12R. Yu, N. Lin, W. Yu, X. Y. Liu, CrystEngComm 2015, 17, 7986–8010.
- 13M. L. Juan, J. Plain, R. Bachelot, P. Royer, S. K. Gray, G. P. Wiederrecht, Appl. Phys. Lett. 2008, 93, 153304.
- 14
- 14aF. Geng, R. Ma, A. Nakamura, K. Akatsuka, Y. Ebina, Y. Yamauchi, N. Miyamoto, Y. Tateyama, T. Sasaki, Nat. Commun. 2013, 4, 1632;
- 14bL. Zhang, J. B. Bailey, R. H. Subramanian, F. A. Tezcan, Nature 2018, 557, 86–91.
- 15A. R. Hirst, I. A. Coates, T. R. Boucheteau, J. F. Miravet, B. Escuder, V. Castelletto, I. W. Hamley, D. K. Smith, J. Am. Chem. Soc. 2008, 130, 9113–9121.
- 16
- 16aJ. Ge, Y. Hu, Y. Yin, Angew. Chem. Int. Ed. 2007, 46, 7428–7431; Angew. Chem. 2007, 119, 7572–7575;
- 16bF. Tong, W. Xu, M. Al-Haidar, D. Kitagawa, R. O. Al-Kaysi, C. J. Bardeen, Angew. Chem. Int. Ed. 2018, 57, 7080–7084; Angew. Chem. 2018, 130, 7198–7202.
- 17M. X. Wu, J. Gao, F. Wang, J. Yang, N. Song, X. Jin, P. Mi, J. Tian, J. Luo, F. Liang, Y. W. Yang, Small 2018, 14, 1704440.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.