Deformylation Reaction by a Nonheme Manganese(III)–Peroxo Complex via Initial Hydrogen-Atom Abstraction
Prasenjit Barman
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 India
Search for more papers by this authorPranav Upadhyay
Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
Search for more papers by this authorAbayomi S. Faponle
Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
Search for more papers by this authorJitendra Kumar
Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
Search for more papers by this authorSayanta Sekhar Nag
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 India
Search for more papers by this authorCorresponding Author
Dr. Devesh Kumar
Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
Search for more papers by this authorCorresponding Author
Dr. Chivukula V. Sastri
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 India
Search for more papers by this authorCorresponding Author
Dr. Sam P. de Visser
Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
Search for more papers by this authorPrasenjit Barman
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 India
Search for more papers by this authorPranav Upadhyay
Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
Search for more papers by this authorAbayomi S. Faponle
Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
Search for more papers by this authorJitendra Kumar
Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
Search for more papers by this authorSayanta Sekhar Nag
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 India
Search for more papers by this authorCorresponding Author
Dr. Devesh Kumar
Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
Search for more papers by this authorCorresponding Author
Dr. Chivukula V. Sastri
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 India
Search for more papers by this authorCorresponding Author
Dr. Sam P. de Visser
Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
Search for more papers by this authorAbstract
Metal–peroxo intermediates are key species in the catalytic cycles of nonheme metalloenzymes, but their chemical properties and reactivity patterns are still poorly understood. The synthesis and characterization of a manganese(III)–peroxo complex with a pentadentate bispidine ligand system and its reactivity with aldehydes was studied. Manganese(III)–peroxo can react through hydrogen-atom abstraction reactions instead of the commonly proposed nucleophilic addition reaction. Evidence of the mechanism comes from experiments which identify a primary kinetic isotope effect of 5.4 for the deformylation reaction. Computational modeling supports the established mechanism and identifies the origin of the reactivity preference of hydrogen-atom abstraction over nucleophilic addition.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604412-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a Biomimetic Oxidations Catalyzed by Transition Metal Complexes (Ed.: ), Imperial College Press, London, 2000;
- 1b Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed. ), Kluwer Academic/Plenum Publishers, New York, 2005.
- 2
- 2aD. J. Vinyard, G. M. Ananyev, G. C. Dismukes, Annu. Rev. Biochem. 2013, 82, 577–606;
- 2bG. Renger, T. Renger, Photosynth. Res. 2008, 98, 53–80;
- 2cJ. Barber, Q. Rev. Biophys. 2003, 36, 71–89;
- 2dP. E. M. Siegbahn, Chem. Eur. J. 2008, 14, 8290–8302.
- 3
- 3aT. A. Jackson, T. C. Brunold, Acc. Chem. Res. 2004, 37, 461–470;
- 3bB. R. Streit, B. Blanc, G. S. Lukat-Rodgers, K. R. Lukat-Rodgers, J. L. Dubois, J. Am. Chem. Soc. 2010, 132, 5711–5724;
- 3cS. Hofbauer, C. Gruber, K. F. Pirker, A. Sündermann, I. Schaffner, C. Jakopitsch, C. Oostenbrink, P. G. Furtmüller, C. Obinger, Biochemistry 2014, 53, 3145–3157.
- 4
- 4aM. Costas, M. P. Mehn, M. P. Jensen, L. Que, Jr., Chem. Rev. 2004, 104, 939–986;
- 4bP. C. A. Bruijnincx, G. van Koten, R. J. M. Klein Gebbink, Chem. Soc. Rev. 2008, 37, 2716–2744;
- 4cM. M. Abu-Omar, A. Loaiza, N. Hontzeas, Chem. Rev. 2005, 105, 2227–2252;
- 4dS. V. Kryatov, E. V. Rybak-Akimova, S. Schindler, Chem. Rev. 2005, 105, 2175–2226.
- 5
- 5aG. Roelfes, V. Vrajmasu, K. Chen, R. Y. N. Ho, J.-U. Rohde, C. Zondervan, R. M. la Crois, E. P. Schudde, M. Lutz, A. L. Spek, R. Hage, B. L. Feringa, E. Münck, L. Que, Jr., Inorg. Chem. 2003, 42, 2639–2653;
- 5bJ. Annaraj, Y. Suh, M. S. Seo, S. O. Kim, W. Nam, Chem. Commun. 2005, 4529–4531;
- 5cA. Thibon, J.-F. Bartoli, S. Bourcier, F. Banse, Dalton Trans. 2009, 9587–9594;
- 5dA. Mukherjee, M. A. Cranswick, M. Chakrabarti, T. K. Paine, K. Fujisawa, E. Münck, L. Que, Jr., Inorg. Chem. 2010, 49, 3618–3628;
- 5eJ. Cho, S. Jeon, S. A. Wilson, L. V. Liu, E. A. Kang, J. J. Braymer, M. H. Lim, B. Hedman, K. O. Hodgson, J. S. Valentine, E. I. Solomon, W. Nam, Nature 2011, 478, 502–505.
- 6
- 6aJ. Annaraj, J. Cho, Y.-M. Lee, S. Y. Kim, R. Latifi, S. P. de Visser, W. Nam, Angew. Chem. Int. Ed. 2009, 48, 4150–4153; Angew. Chem. 2009, 121, 4214–4217;
- 6bD. F. Leto, S. Chattopadhyaay, V. W. Day, T. A. Jackson, Dalton Trans. 2013, 42, 13014–13025;
- 6cM. Zlatar, M. Gruden, O. Y. Vassilyeva, E. A. Buvaylo, A. N. Ponomarev, S. A. Zvyagin, J. Wosnitza, J. Krzystek, P. Garcia-Fernandez, C. Duboc, Inorg. Chem. 2016, 55, 1192–1201;
- 6dC.-M. Lee, C.-H. Chuo, C.-H. Chen, C.-C. Hu, M.-H. Chiang, Y.-J. Tseng, C.-H. Hu, G.-H. Lee, Angew. Chem. Int. Ed. 2012, 51, 5427–5430; Angew. Chem. 2012, 124, 5523–5526.
- 7W. Nam, Acc. Chem. Res. 2007, 40, 522–531.
- 8
- 8aM. K. Coggins, J. A. Kovacs, J. Am. Chem. Soc. 2011, 133, 12470–12473;
- 8bM. K. Coggins, V. Martin-Diaconescu, S. DeBeer, J. A. Kovacs, J. Am. Chem. Soc. 2013, 135, 4260–4272.
- 9H. E. Colmer, A. W. Howcroft, T. A. Jackson, Inorg. Chem. 2016, 55, 2055–2069.
- 10
- 10aP. Comba, M. Kerscher, W. Schiek, Prog. Inorg. Chem. 2007, 55, 613–704;
- 10bP. Comba, S. Fukuzumi, H. Kotani, S. Wunderlich, Angew. Chem. Int. Ed. 2010, 49, 2622–2625; Angew. Chem. 2010, 122, 2679–2682.
- 11L1=dimethyl-2,4-di(2-pyridyl)3-(pyridin-2-ylmethyl)-7-benzyl-3,7-diaza-bicyclo[3.3.1] nonan-9-one-1,5-dicarboxylate.
- 12P. Barman, A. K. Vardhaman, B. Martin, S. J. Wörner, C. V. Sastri, P. Comba, Angew. Chem. Int. Ed. 2015, 54, 2095–2099; Angew. Chem. 2015, 127, 2123–2127.
- 13
- 13aM. S. Seo, J. Y. Kim, J. Annaraj, Y. Kim, Y.-M. Lee, S.-J. Kim, J. Kim, W. Nam, Angew. Chem. Int. Ed. 2007, 46, 377–380; Angew. Chem. 2007, 119, 381–384;
- 13bR. A. Geiger, S. Chattopadhyay, V. W. Day, T. A. Jackson, Dalton Trans. 2011, 40, 1707–1715;
- 13cY. Goto, S. Wada, I. Morishima, Y. Watanabe, J. Inorg. Biochem. 1998, 69, 241–247;
- 13dJ. Cho, R. Sarangi, J. Annaraj, S. Y. Kim, M. Kubo, T. Ogura, E. I. Solomon, W. Nam, Nat. Chem. 2009, 1, 568–572;
- 13eR. L. Shook, W. A. Gunderson, J. Greaves, J. W. Ziller, M. P. Hendrich, A. S. Borovik, J. Am. Chem. Soc. 2008, 130, 8888–8889;
- 13fJ. Cho, R. Sarangi, H. Y. Kang, J. Y. Lee, M. Kubo, T. Ogura, E. I. Solomon, W. Nam, J. Am. Chem. Soc. 2010, 132, 16977–16986;
- 13gR. V. Ottenbacher, D. G. Samsonenko, E. P. Talsi, K. P. Bryliakov, ACS Catal. 2016, 6, 979–988;
- 13hJ. A. Kovacs, Acc. Chem. Res. 2015, 48, 2744–2753;
- 13iC.-M. Lee, C.-H. Chuo, C.-H. Chen, C.-C. Hu, M.-H. Chiang, Y.-J. Tseng, C.-H. Hu, G.-H. Lee, Angew. Chem. Int. Ed. 2012, 51, 5427–5430; Angew. Chem. 2012, 124, 5523–5526.
- 14
- 14aJ. T. Groves, T. E. Nemo, J. Am. Chem. Soc. 1983, 105, 6243–6248;
- 14bS. Rana, A. Dey, D. Maiti, Chem. Commun. 2015, 51, 14469–14472.
- 15
- 15aA. K. Vardhaman, P. Barman, S. Kumar, C. V. Sastri, D. Kumar, S. P. de Visser, Angew. Chem. Int. Ed. 2013, 52, 12288–12292; Angew. Chem. 2013, 125, 12514–12518;
- 15bS. P. de Visser, M. G. Quesne, B. Martin, P. Comba, U. Ryde, Chem. Commun. 2014, 50, 262–282;
- 15cS. Kumar, A. S. Faponle, P. Barman, A. K. Vardhaman, C. V. Sastri, D. Kumar, S. P. de Visser, J. Am. Chem. Soc. 2014, 136, 17102–17115.
- 16L. Ji, A. S. Faponle, M. G. Quesne, M. A. Sainna, J. Zhang, A. Franke, D. Kumar, R. van Eldik, W. Liu, S. P. de Visser, Chem. Eur. J. 2015, 21, 9083–9092.
- 17
- 17aS. S. Shaik, J. Am. Chem. Soc. 1981, 103, 3692–3701;
- 17bS. Shaik, Phys. Chem. Chem. Phys. 2010, 12, 8706–8720.
- 18
- 18aD. Kumar, B. Karamzadeh, G. N. Sastry, S. P. de Visser, J. Am. Chem. Soc. 2010, 132, 7656–7667;
- 18bD. Kumar, R. Latifi, S. Kumar, E. V. Rybak-Akimova, M. A. Sainna, S. P. de Visser, Inorg. Chem. 2013, 52, 7968–7979.
- 19A. S. Faponle, M. G. Quesne, S. P. de Visser, Chem. Eur. J. 2016, 22, 5478–5483.
- 20L. J. Rajakovich, H. Nørgard, D. M. Warui, W.-C. Chang, N. Li, S. J. Booker, C. Krebs, J. M. Bollinger, Jr., M.-E. Pandelia, J. Am. Chem. Soc. 2015, 137, 11695–11709.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.