One-Dimensional Semiconducting Hybrid Nanostructure: Gas Sensing and Optoelectronic Applications
Jyoti Rawat
Doon University, School of Physical Sciences, Department of Chemistry, Kedarpuram Dehradun, Uttarakhand, 248001 India
Search for more papers by this authorHimani Sharma
Doon University, School of Physical Sciences, Department of Chemistry, Kedarpuram Dehradun, Uttarakhand, 248001 India
Search for more papers by this authorCharu Dwivedi
Doon University, School of Physical Sciences, Department of Chemistry, Kedarpuram Dehradun, Uttarakhand, 248001 India
Search for more papers by this authorJyoti Rawat
Doon University, School of Physical Sciences, Department of Chemistry, Kedarpuram Dehradun, Uttarakhand, 248001 India
Search for more papers by this authorHimani Sharma
Doon University, School of Physical Sciences, Department of Chemistry, Kedarpuram Dehradun, Uttarakhand, 248001 India
Search for more papers by this authorCharu Dwivedi
Doon University, School of Physical Sciences, Department of Chemistry, Kedarpuram Dehradun, Uttarakhand, 248001 India
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
Nanostructures of one dimension (1D) are being studied for a wide range of substances due to their unique physical and structural properties as well as their possibilities of being utilized in future technologies. 1D hybrid nanostructures such as nanorods, nanowires, nanobelts, and nanotubes offer high surface area and have distinctive optical and electrical features. Due to their unique characteristics, they exhibit huge potential for application as gas sensors; therefore, 1D semiconductors have gathered much attention in both basic and applied research. This chapter provides a detailed account of methods of fabrication and applications of the 1D hybrid nanostructure.
References
- Liu , X. and Li , Y. ( 2009 ). One-dimensional hybrid nanostructures with light-controlled properties . Dalton Trans. 33 : 6447 – 6457 .
- Murray , C.B. , Norris , D.J. , and Bawendi , M.G. ( 1993 ). Synthesis and characterization of nearly monodisperse CdE (sulfur, selenium, tellurium) semiconductor nanocrystallites . J. Am. Chem. Soc. 115 ( 19 ): 8706 – 8715 .
- Fu , N. , Li , Z. , Myalitsin , A. et al. ( 2010 ). One-dimensional heterostructures of single walled carbon nanotubes and CdSe nanowires . Small 6 ( 3 ): 376 – 380 .
- Cui , Y. and Lieber , C.M. ( 2001 ). Functional nanoscale electronic devices assembled using silicon nanowire building blocks . Science 291 ( 5505 ): 851 – 853 .
- Peng , X. , Chen , J. , Misewich , J.A. , and Wong , S.S. ( 2009 ). Carbon nanotube–nanocrystal heterostructures . Chem. Soc. Rev. 38 ( 4 ): 1076 – 1098 .
- Tan , C. , Chen , J. , Wu , X.J. , and Zhang , H. ( 2018 ). Epitaxial growth of hybrid nanostructures . Nat. Rev. Mater. 3 ( 2 ): 17089 .
- Huang , X. , Tan , C. , Yin , Z. , and Zhang , H. ( 2014 ). 25th anniversary article: hybrid nanostructures based on two dimensional nanomaterials . Adv. Mater. 26 ( 14 ): 2185 – 2204 .
- Tan , C. and Zhang , H. ( 2015 ). Two-dimensional transition metal dichalcogenide nanosheet-based composites . Chem. Soc. Rev. 44 ( 9 ): 2713 – 2731 .
- Fateixa , S. , Nogueira , H.I.S. , and Trindade , T. ( 2015 ). Hybrid nanostructures for SERS: materials development and chemical detection . Phys. Chem. Chem. Phys. 17 ( 33 ): 21046 – 21071 .
- Reddy , K.R. , Hassan , M. , and Gomes , V.G. ( 2015 ). Hybrid nanostructures based on titanium dioxide for enhanced photo catalysis . Appl. Catal., A 489 : 1 – 16 .
- Du , N. , Zhang , H. , and Yang , D. ( 2012 ). One-dimensional hybrid nanostructures: synthesis via layer-by-layer assembly and applications . Nanoscale 4 ( 18 ): 5517 – 5526 .
- Wang , X. , Song , J. , Li , P. et al. ( 2005 ). Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al 0.5 Ga 0.5 N substrates . J. Am. Chem. Soc. 127 ( 21 ): 7920 – 7923 .
- Kovtyukhova , N.I. , Kelley , B.K. , and Mallouk , T.E. ( 2004 ). Coaxially gated in-wire thin-film transistors made by template assembly . J. Am. Chem. Soc. 126 ( 40 ): 12738 – 12739 .
- Vila-Fungueirino , J.M. , Bachelet , R. , Saint-Girons , G. et al. ( 2015 ). Integration of functional complex oxide nanomaterials on silicon . Front. Phys. 3 : 38 .
- Peng , L. , Zhang , Z. , Wang , S. , and Liang , X. ( 2012 ). A doping-free approach to carbon nanotube electronics and optoelectronics . AIP Adv. 2 ( 4 ): 041403 .
- Fu , Y. , Zhu , H. , Chen , J. et al. ( 2019 ). Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties . Nat. Rev. Mater. 4 ( 3 ): 169 – 188 .
- Zhao , Y.S. , Fu , H. , Peng , A. et al. ( 2010 ). Construction and optoelectronic properties of organic one-dimensional nanostructures . Acc. Chem. Res. 43 ( 3 ): 409 – 418 .
- Razeghi , M. , Haddadi , A. , Hoang , A.M. et al. ( 2014 ). Antimonide-based type II superlattices: a superior candidate for the third generation of infrared imaging systems . J. Electron. Mater. 43 ( 8 ): 2802 – 2807 .
- Tan , C.L. and Mohseni , H. ( 2018 ). Emerging technologies for high performance infrared detectors . Nanophotonics 7 ( 1 ): 169 – 197 .
- Sotiropoulou , S. , Sierra-Sastre , Y. , Mark , S.S. , and Batt , C.A. ( 2008 ). Biotemplated nanostructured materials . Chem. Mater. 20 ( 3 ): 821 – 834 .
- Arole , V.M. and Munde , S.V. ( 2014 ). Fabrication of nanomaterials by top-down and bottom-up approaches-an overview . JAAST Mater. Sci. 1 ( 2 ): 89 – 93 .
- Chen , Y. , Chadderton , L.T. , Gerald , J.F. , and Williams , J.S. ( 1999 ). A solid-state process for formation of boron nitride nanotubes . Appl. Phys. Lett. 74 ( 20 ): 2960 – 2962 .
- Fernandez , A. , Reddy , E.P. , Rojas , T.C. , and Sanchez-Lopez , J.C. ( 1999 ). Application of the gas phase condensation to the preparation of nanoparticles . Vaccum 52 ( 1-2 ): 83 – 88 .
- Chepkasov , I.V. , Gafner , Y.Y. , Gafner , S.L. , and Bardahanov , S.P. ( 2016 ). Condensation of Cu nanoparticles from the gas phase . Phys. Met. Metall. 117 ( 10 ): 1003 – 1012 .
- Colson , P. , Henrist , C. , and Cloots , R. ( 2013 ). Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterial . J. Nanomater. 2013 : 948510 .
- Manouras , T. and Argitis , P. ( 2020 ). High sensitivity resists for EUV lithography: a review of material design strategies and performance results . Nanomaterials 10 ( 8 ): 1593 .
- Dhawan , A. , Du , Y. , Batchelor , D. et al. ( 2011 ). Hybrid top-down and bottom-up fabrication approach for wafer-scale plasmonic nanoplatforms . Small 7 ( 6 ): 727 – 731 .
- Shen , G. and Chen , D. ( 2009 ). One-dimensional nanostructure and device of II-V group semiconductor . Nanoscale Res. Lett. 4 ( 8 ): 779 – 788 .
-
Kumar , S.
,
Bhushan , P.
, and
Bhattacharya , S.
(
2018
).
Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others
. In:
Environmental
(ed.
S. Bhattacharya
,
A.A. Kumar
,
N. Chanda
, et al.),
167
–
198
.
Singapore
:
Chemical and Medical Sensors
.
10.1007/978-981-10-7751-7_8 Google Scholar
-
Ploog , K.
(
1980
).
Molecular beam epitaxy of III–V compounds
. In: III–V Semiconductors. In:
Crystals (Growth, Properties, and Applications)
(ed.
H.C. Freyhardt
),
73
–
162
.
Berlin Heidelberg
:
Springer-Verlag
.
10.1007/978-3-642-67611-6_3 Google Scholar
-
Cho , A.Y.
and
Arthur , J.
(
1975
).
Molecular beam epitaxy
.
Prog. Solid State Chem.
10
(
3
):
157
–
191
.
10.1016/0079-6786(75)90005-9 Google Scholar
- Rothemund , P.W.K. ( 2005 ). Design of DNA origami. ICCAD-2005 . In: IEEE/ACM International Conference on Computer Aided Design , vol. 2005 , 471 – 448 . IEEE .
- Whitesides , G.M. , Mathias , J.P. , and Seto , C.T. ( 1991 ). Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures . Science 254 ( 5036 ): 1312 – 1319 .
- Chen , Y. , Xu , P. , Xu , T. et al. ( 2017 ). ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H 2 S . Sens. Actuators, B 240 : 264 – 272 .
- Sharma , B. , Sharma , A. , and Myung , J.H. ( 2021 ). Selective ppb-level NO 2 gas sensor based on SnO 2 -boron nitride nanotubes . Sens. Actuators, B 331 : 129464 .
- Bhowmik , B. , Dutta , K. , and Bhattacharyya , P. ( 2019 ). An efficient room temperature ethanol sensor device based on p-n homojunction of TiO 2 nanostructures . IEEE Trans. Electron Devices 66 ( 2 ): 1063 – 1068 .
- Li , X. , Wang , Y. , Le , Y. , and Gu , Z. ( 2012 ). Highly sensitive H 2 S sensor based on template-synthesized CuO nanowires . RSC Adv. 2 ( 6 ): 2302 – 2307 .
- Wang , J.X. , Sun , X.W. , Yang , Y. , and Wu , C.M.L. ( 2009 ). N–P transition sensing behaviors of ZnO nanotubes exposed to NO 2 gas . Nanotechnology 20 ( 46 ): 465501 .
- Lupan , O. , Postica , V. , Wolf , N. et al. ( 2017 ). Localized synthesis of iron oxide nanowires and fabrication of high performance nanosensors based on a single Fe 2 O 3 nanowire . Small Methods 13 ( 16 ): 1602868 .
- Navale , S.T. , Yang , Z.B. , Liu , C. et al. ( 2018 ). Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit . Sens. Actuators, B 255 : 1701 – 1710 .
- Yan , S. , Li , Z. , Li , H. et al. ( 2018 ). Ultra-sensitive room-temperature H 2 S sensor using Ag–In 2 O 3 nanorod composites . J. Mater. Sci. 53 ( 24 ): 16331 – 16344 .
- Andre , R.S. , Mercante , L.A. , Facure , M.H.M. et al. ( 2019 ). Enhanced and selective ammonia detection using In 2 O 3 /reduced graphene oxide hybrid nanofibers . Appl. Surf. Sci. 473 : 133 – 140 .
- Wang , X. , Li , Z. , Shi , J. , and Yu , Y. ( 2014 ). One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts . Chem. Rev. 114 ( 19 ): 9346 – 9384 .
- Hench , L.L. and West , J.K. ( 1990 ). The sol-gel process . Chem. Rev. 90 ( 1 ): 33 – 72 .
- Choi , K.S. and Chang , S.P. ( 2018 ). Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes . Mater. Lett. 230 ( 1 ): 48 – 52 .
- Sen , R. , Govindaraj , A. , and Rao , C.N. ( 1997 ). Carbon nanotubes by the metallocene route . Chem. Phys. Lett. 267 ( 3-4 ): 276 – 280 .
- Soares , O.S.G.P. , Rocha , R.P. , Gonçalves , A.G. et al. ( 2015 ). Easy method toprepare N-doped carbon nanotubes by ball milling . Carbon 91 : 114 – 121 .
- Popov , V.N. ( 2004 ). Carbon nanotubes: properties and applications . Mater. Sci. Eng., R 43 : 61 – 102 .
- Singh , N. , Buddharaju , K.D. , Manhas , S.K. et al. ( 2008 ). Si, SiGe nanowire devices by top–down technology and their applications . IEEE Trans. Electron Devices 55 ( 11 ): 3107 – 3118 .
- Hobbs , R.G. , Petkov , N. , and Holmes , J.D. ( 2012 ). Semiconductor nanowire fabrication by bottom-up and top-down paradigms . Chem. Mater. 24 ( 11 ): 1975 – 1991 .
- Shakthivel , D. , Ahmad , M. , Alenezi , M.R. et al. ( 2019 ). 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability , Elements in Flexible and Large Area Electronics (ed. R. Dahiya and L. Occhipinti ), 1 – 98 . Cambridge University Press .
-
Wu , Y.
,
Yan , H.
,
Huang , M.
et al. (
2002
).
Inorganic semiconductor nanowires: rational growth, assembly and novel properties
.
Chem. Eur. J.
8
(
6
):
1260
–
1268
.
10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- Wagner , R.S. and Ooherty , C.J. ( 1968 ). Mechanism of branching and kinking during VLS crystal growth . J. Electrochem. Soc. 115 ( 1 ): 93 .
- He , R. , Gao , D. , Fan , R. et al. ( 2005 ). Si nanowire bridges in microtrenches: integration of growth into device fabrication . Adv. Mater. 17 ( 17 ): 2098 – 2102 .
- Panda , D. and Tseng , T.Y. ( 2013 ). One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications . J. Mater. Sci. 48 ( 20 ): 6849 – 6877 .
- Pauzauskie , P.J. and Yang , P. ( 2006 ). Nanowire photonics . Mater. Today 9 ( 10 ): 36 – 45 .
- Huang , M.H. , Mao , S. , Feick , H. et al. ( 2001 ). Room-temperature ultraviolet nanowire nanolasers . Science 292 ( 5523 ): 1897 – 1899 .
- Wagner , R.S. and Ellis , W.C. ( 1964 ). Vapor-liquid-solid mechanism of single crystal growth . Appl. Phys. Lett. 4 ( 5 ): 89 – 90 .
- Ghassan , A.A. , Mijan , N.A. , and Taufiq-Yap , Y.H. ( 2019 ). Nanomaterials: an overview of nanorods synthesis andoptimization . In: Nanorods and Nanocomposites (ed. M.S. Ghamsari and S. Dhara ), 1 – 24 . London : Intech Open .
- Li , L.S. and Alivisatos , A.P. ( 2003 ). Origin and scaling of the permanent dipole moment in CdSe nanorods . Phys. Rev. Lett. 90 ( 9 ): 097402 .
- Liu , J. , Tanaka , T. , Sivula , K. et al. ( 2004 ). Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells . J. Am. Chem. Soc. 126 ( 21 ): 6550 – 6551 .
- Mutiso , R.M. , Sherrott , M.C. , Rathmell , A.R. et al. ( 2013 ). Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films fortransparent conductors . ACS Nano 7 ( 9 ): 7654 – 7663 .
- Rao , M.V. , Amareshwari , K. , Viditha , V. et al. ( 2013 ). Flame synthesis of carbon nanorods with/without catalyst . Int. J. Innov. Appl. Stud. 3 ( 1 ): 1 – 5 .
- Yuan , Z. , Li , R. , Meng , F. et al. ( 2019 ). Approaches to enhancing gas sensing properties: a review . Sensors 19 ( 7 ): 1495 .
- Oh , E. , Choi , H.Y. , Jung , S.H. et al. ( 2009 ). High-performance NO 2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation . Sens. Actuators, B 141 ( 1 ): 239 – 243 .
- Fine , G.F. , Cavanagh , L.M. , Afonja , A. , and Binions , R. ( 2010 ). Metal oxide semi-conductor gas sensors in environmental monitoring . Sensors 10 ( 6 ): 5469 – 5502 .
- Nikolic , M.V. , Milovanovic , V. , Vasiljevic , Z.Z. , and Stamenkovic , Z. ( 2020 ). Semiconductor gas sensors: materials, technology, design and application . Sensors 20 ( 22 ): 6694 .
- Rosty , R. , Kebbekus , B. , and Zaitsev , V. ( 2005 ). The testing of a semiconductor-based adsorption modified photosensitive sensor for its response to a volatile organic compound, oxygen, humidity and temperature . Sens. Actuators, B 107 ( 1 ): 347 – 352 .
- Huang , B. , Lei , C. , Wei , C. , and Zen , G. ( 2014 ). Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human impacts, and current remediation technologies . Environ. Int. 71 : 118 – 138 .
- Wen , X. , Fang , Y. , Pang , Q. et al. ( 2005 ). ZnO nanobelt arrays grown directly from and on Zinc substrates: Synthesis, characterization, and applications . J. Phys. Chem. B. 109 ( 32 ): 15303 – 15308 .
- Fang , X. , Hu , L. , Ye , C. , and Zhang , L. ( 2010 ). One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors . Pure Appl. Chem. 82 ( 11 ): 2185 – 2198 .
- Velasco , G. and Schnell , J.P. ( 1983 ). Gas sensors and their applications in the automotive industry . J. Phys. E: Sci. Instrum. 16 ( 10 ): 973 – 977 .
-
Leelakumar , M.
(
2020
).
Design of Electronic Control for Diesel Engines
. In:
Design and Development of Heavy Duty Diesel Engines
(ed.
P.A. Laxminarayanan
and
A.A. Kumar
),
795
–
830
.
Singapore
.
10.1007/978-981-15-0970-4_22 Google Scholar
- Masikini , M. , Chowdhury , M. , and Nemraoui , O. ( 2020 ). Metal oxides: application in exhaled breath acetone chemiresistive sensors . J. Electrochem. Soc. 167 ( 3 ): 037537 .
- Eddy , D.S. and Sparks , D.R. ( 1998 ). Application of MEMS technology in automotive sensors and actuators . Proc. IEEE 86 ( 8 ): 1747 – 1755 .
- Sun , P. , Bisschop , R. , Niu , H. , and Huang , X. ( 2020 ). A review of battery fires in electric vehicles . Fire Technol. 56 ( 4 ): 1361 – 1410 .
- Nunes , D. , Pimentel , A. , Gonçalves , A. et al. ( 2019 ). Metal oxide nanostructures for sensor applications . Semicond. Sci. Technol. 34 ( 4 ): 043001 .
- Pavelko , R.G. , Vasiliev , A.A. , Llobet , E. et al. ( 2009 ). Comparative study of nanocrystalline SnO 2 materials for gas sensor application: thermal stability and catalytic activity . Sens. Actuators, B 137 ( 2 ): 637 – 643 .
- Padvi , M.N. , Moholkar , A.V. , Prasad , S.R. , and Prasad , N.R. ( 2021 ). A critical review on design and development of gas sensing materials . Eng. Sci. 15 : 20 – 37 .
- Kumar , R. , Jaiswal , M. , Singh , O. et al. ( 2019 ). Selective and reversible sensing of low concentration of carbon monoxide gas using Nb-doped OMS-2 nanofibers at room temperature . IEEE Sens. J. 19 ( 17 ): 7201 – 7206 .
- Wang , Z. , Zhu , L. , Sun , S. et al. ( 2021 ). One dimensional nanomaterial in resistive gas sensor: from material design to application . Chemosensors 9 ( 8 ): 198 – 200 .
- Raza , M.H. , Kaur , N. , Comini , E. , and Pinna , N. ( 2020 ). Toward optimized radial modulation of the space-charge region in one-dimensional SnO 2 -NiO core-shell nanowires for hydrogen sensing . ACS Appl. Mater. Interfaces 12 ( 4 ): 4594 – 4606 .
- Nikfarjam , A. , Hosseini , S. , and Salehifar , N. ( 2017 ). Fabrication of a highly sensitive single aligned TiO 2 and gold nanoparticle embedded TiO 2 nano-fiber gas sensor . ACS Appl. Mater. Interfaces 9 ( 18 ): 15662 – 15671 .
- Spetz , A.L. , Unéus , L. , Svenningstorp , H. et al. ( 2001 ). SiC based field effect gas sensors for industrial applications . Phys. Stat. Sol. 185 ( 1 ): 15 – 25 .
- Shimizu , Y. , Matsunaga , N. , Hyodo , T. , and Egashira , M. ( 2001 ). Improvement of SO 2 sensing properties of WO 3 by noble metal loading . Sens. Actuators, B 77 ( 2 ): 35 – 40 .
- Sowmya , B. , John , A. , and Panda , P.K. ( 2021 ). A review on metal-oxide based p-n and n-n hetero structured nanomaterials for gas sensing applications . Sens. Int. 2 ( 3 ): 100085 .
- Tao , W.H. and Tsai , C.H. ( 2002 ). H 2 S sensing properties of noble metal doped WO 3 thin film sensor fabricatedby micromachining . Sens. Actuators, B 81 ( 2-3 ): 237 – 247 .
-
Kuswandi , B.
,
Wicaksono , Y.
,
Jayus , A.A.
et al. (
2011
).
Smart packaging: sensors for monitoring of food quality and safety
.
Sens. Instrum. Food Qual. Saf.
5
(
3
):
137
–
146
.
10.1007/s11694-011-9120-x Google Scholar
- Kim , N.H. , Choi , S.J. , Yang , D.J. et al. ( 2014 ). Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO 3 nanofibers for potential diagnosis of halitosis and lung cancer . Sens. Actuators, B 193 ( 193 ): 574 – 581 .
- Ama , O. , Sadiq , M. , Johnson , M. et al. ( 2020 ). Novel 1D/2D KWO/Ti 3 C 2 T x nanocomposite-based acetone sensor for diabetes prevention and monitoring . Chemosensors 8 ( 4 ): 102 .
- Wang , X. , Li , Y. , Pionteck , J. et al. ( 2018 ). Flexible poly(styrene-butadiene-styrene)/carbon nanotube fiber based vapor sensors with high sensitivity, wide detection range and fast response . Sens. Actuators, B 256 : 896 – 904 .
- Gong , H. , Zhao , C. , Niu , G. et al. ( 2020 ). Construction of 1D/2D α-Fe 2 O 3 /SnO 2 hybridnanoarrays for sub-ppm acetone detection . Res. Sci. Partner J. 2020 : 2196063 .
- Moon , S.E. , Choi , N.J. , Lee , H.K. et al. ( 2013 ). Semiconductor-type MEMS gas sensor for real-time environmental monitoring applications . ETRI J. 35 ( 4 ): 617 – 624 .
- Tomchenko , A.A. , Harmer , G.P. , Marquis , B.T. , and Allen , J.W. ( 2003 ). Semiconducting metal oxide sensor array for the selective detection of combustion gases . Sens. Actuators, B 93 ( 1-3 ): 126 – 134 .
- Ibrahim , R.K. , Hayyan , M. , AlSaadi , M.A. et al. ( 2016 ). Environmental application of nanotechnology: air, soil, and water . Environ. Sci. Pollut. Res. 23 ( 14 ): 13754 – 13788 .
- Yamazoe , N. and Miura , N. ( 1994 ). Environmental gas sensing . Sens. Actuators, B 20 ( 2-3 ): 95 – 102 .
- Suh , J.M. , Kwon , K.C. , Lee , T.H. et al. ( 2021 ). Edge-exposed WS 2 on 1D nanostructures for highly selective NO 2 sensor at room temperature . Sens. Actuators, B 333 : 129566 .
- Dai , W. , Yu , J. , Luo , S. et al. ( 2020 ). WS 2 quantum dots seeding in Bi 2 S 3 nanotubes: a novel Vis-NIR light sensitive photocatalyst with low-resistance junction interface for CO 2 reduction . Chem. Eng. J. 389 : 123430 .
- Lim , K. , Jo , Y.M. , Yoon , J.W. et al. ( 2021 ). A transparent nanopatterned chemiresistor: visible light plasmonics sensor for trace level NO 2 detection at room temperature . Small 17 ( 20 ): 2100438 .
- Cui , S. , Pu , H. , Lu , G. et al. ( 2012 ). Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes . ACS Appl. Mater. Interfaces 4 ( 9 ): 4898 – 4904 .
- Pescaglini , A. and Iacopino , D. ( 2015 ). Metal nanoparticle–semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing . J. Mater. Chem. C. 3 ( 45 ): 11785 – 11800 .
- Zhang , X. , Wu , D. , and Geng , H. ( 2017 ). Heterojunctions based on II-VI compound semiconductor one dimensional nanostructures and their optoelectronic applications . Crystals 7 ( 10 ): 307 .
- Jeon , N.J. , Noh , J.H. , Yang , W.S. et al. ( 2015 ). Compositional engineering of perovskite materials for high-performance solar cells . Nature 517 ( 7535 ): 476 – 480 .
- Liu , J. , Yang , Z. , Ye , B. et al. ( 2019 ). A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications . J. Mater. Chem. C. 7 ( 17 ): 4934 – 4955 .
- Hyun , J.K. and Lauhon , L.J. ( 2011 ). Spatially resolved plasmonically enhanced photocurrent from Au nanoparticles on a Si nanowire . Nanoletters 11 ( 7 ): 2731 – 2734 .
- Grinblat , G. , Rahmani , M. , Cortés , E. et al. ( 2014 ). High efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer . Nano Lett. 14 ( 11 ): 6660 – 6665 .
- Knight , M.W. , Sobhani , H. , Nordlander , P. , and Halas , N.J. ( 2011 ). Photodetection with active optical antennas . Science 332 ( 6030 ): 702 – 704 .
- Kawawaki , T. , Wang , H. , Kubo , T. et al. ( 2015 ). Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes . ACS Nano 9 ( 4 ): 4165 – 4172 .
- Chen , W. , Hao , J. , Hu , W. et al. ( 2017 ). Enhanced stability and tunable photoluminescence in perovskite CsPbX 3 /ZnS quantum dot heterostructure . Small 13 ( 21 ): 1604085 .
- Jie , J. , Zhang , W. , Bello , I. et al. ( 2010 ). One-dimensional II–VI nanostructures: synthesis, properties and optoelectronic applications . Nanotoday 5 ( 4 ): 313 – 336 .
- Chen , Q. , De Marco , N. , Yang , Y.M. et al. ( 2015 ). Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications . Nanotoday 10 ( 3 ): 355 – 338 .
- Luo , L.B. , Xie , W.J. , Zou , Y.F. et al. ( 2015 ). Surface plasmon propelled high-performance CdSe nanoribbons photodetector . Opt. Express 23 ( 10 ): 12979 – 12988 .
- Dong , R. , Fang , Y. , Chae , J. et al. ( 2015 ). High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites . Adv. Mater. 27 ( 11 ): 1912 – 1918 .
- Wang , L. , Chen , R. , Ren , Z.F. et al. ( 2016 ). Plasmonic silver nanosphere enhanced ZnSe nanoribbon/Si heterojunction optoelectronic devices . Nanotechnology 27 ( 21 ): 215202 .
- Dou , L. , Yang , Y.M. , You , J. et al. ( 2014 ). Solution-processed hybrid perovskite photodetectors with high detectivity . Nat. Commun. 5 ( 1 ): 5404 .
- Afzaal , M. and Brien , P. ( 2006 ). Recent developments in II–VI and III–VI semiconductors and their applications in solar cells . J. Mater. Chem. 16 ( 17 ): 1597 – 1602 .
- Ferekides , C.S. , Balasubramanian , U. , Mamazza , R. et al. ( 2004 ). CdTe thin film solar cells: device and technology issues . Sol. Energy 77 ( 6 ): 823 – 830 .
-
Bamola , P.
,
Rana , S.
,
Singh , B.
et al. (
2021
).
Nanostructured oxide based ceramic materials for light and mechanical energy harvesting applications
. In:
Advanced Ceramics for Energy and Environmental Applications
, vol.
11
(ed.
A. Kumar
),
116
–
135
.
Boca Raton
.
10.1201/9781003005155-5 Google Scholar
- Wu , D. , Jiang , Y. , Li , S. et al. ( 2011 ). Construction of highquality CdS: Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications . Nanotechnology 22 : 405201 .
- Zhang , X. , Zhang , X. , Wang , L. et al. ( 2013 ). ZnSe nanowire/Si p heterojunctions: device construction and optoelectronic applications . Nanotechnology 24 ( 39 ): 395201 .
- Wong , A.B. , Brittman , S. , Yu , Y. et al. ( 2015 ). Core–shell CdS–Cu 2 S nanorod array solar cells . Nano Lett. 15 ( 6 ): 4096 – 4101 .
- Tvingstedt , K. , Malinkiewicz , O. , Baumann , A. et al. ( 2014 ). Radiative efficiency of lead iodide based perovskite solar cells . Sci. Rep. 4 : 6071 .
- Duan , X. , Huang , Y. , Cui , Y. et al. ( 2001 ). Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices . Nature 409 ( 6816 ): 66 – 69 .
- Huang , Y. , Duan , X. , and Lieber , C.M. ( 2005 ). Nanowires for integrated multicolor nanophotonics . Small 1 ( 1 ): 142 – 147 .
- Li , Y. , Qian , F. , Xiang , J. , and Lieber , M. ( 2006 ). Nanowire electronic and optoelectronic devices . Mater. Today 9 ( 10 ): 18 – 27 .
- Ye , F. , Zhang , H. , Li , W. et al. ( 2019 ). Ligand-exchange of low-temperature synthesized CsPbBr 3 perovskite toward high efficiency light emitting diodes . Small Methods 3 ( 3 ): 1800489 .
- Yassitepe , E.Y. , Yang , Z. , Voznyy , O. et al. ( 2016 ). Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light emitting diodes . Adv. Funct. Mater. 26 ( 47 ): 8757 – 8763 .
- Demchyshyan , S. , Roemer , J.M. , Groib , H. et al. ( 2017 ). Confining metal-halide perovskites in nanoporous thin films . Sci. Adv. 3 ( 8 ): 1700738 .
- Duan , X. , Huang , Y. , Agarwal , R. , and Lieber , C.M. ( 2003 ). Single-nanowire electrically driven lasers . Nature 421 : 241 – 245 .
- Tan , Z.K. , Moghaddam , R.S. , Lai , M.L. et al. ( 2014 ). Bright light-emitting diodes based on organometal halide perovskite . Nat. Nanotechnol. 9 ( 9 ): 687 – 692 .
- Anaya , M. , Rand , B.P. , Holmes , R.J. et al. ( 2019 ). Best practices for measuring emerging light-emitting diode technologies . Nat. Photonics 13 ( 12 ): 818 – 821 .
- Greenham , N.C. , Friend , R.H. , and Bradley , D.D.C. ( 1994 ). Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations . Adv. Mater. 6 ( 6 ): 491 – 494 .
- Chen , H.W. , Lee , J.H. , Lin , B.Y. et al. ( 2018 ). Liquid crystal display and organic light-emitting diode display: present status and future perspectives . Light Sci. Appl. 7 ( 3 ): 17168 .
- Long , X. , He , J. , Zhou , J. et al. ( 2015 ). A review on light-emitting diode based automotive headlamps . Renewable Sustainable Energy Rev. 41 : 29 – 41 .
- Zhao , B. , Bai , S. , Kim , V. et al. ( 2018 ). High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes . Nat. Photonics 12 ( 12 ): 783 – 789 .
- Lin , K. , Xing , J. , Quan , L.N. et al. ( 2018 ). Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent . Nature 562 ( 7726 ): 245 – 248 .