MEMS Using CMOS Wafer
Weileun Fang
National Tsing Hua University, Department of Power Mechanical Engineering, Kuang-Fu Road, Hsinchu, 300044 Taiwan
Search for more papers by this authorSheng-Shian Li
National Tsing Hua University, Department of Power Mechanical Engineering, Kuang-Fu Road, Hsinchu, 300044 Taiwan
Search for more papers by this authorYi Chiu
National Chiao Tung University, Department of Electrical Engineering, Ta-Hsueh Road, Hsinchu, 30010 Taiwan
Search for more papers by this authorMing-Huang Li
National Tsing Hua University, Department of Power Mechanical Engineering, Kuang-Fu Road, Hsinchu, 300044 Taiwan
Search for more papers by this authorWeileun Fang
National Tsing Hua University, Department of Power Mechanical Engineering, Kuang-Fu Road, Hsinchu, 300044 Taiwan
Search for more papers by this authorSheng-Shian Li
National Tsing Hua University, Department of Power Mechanical Engineering, Kuang-Fu Road, Hsinchu, 300044 Taiwan
Search for more papers by this authorYi Chiu
National Chiao Tung University, Department of Electrical Engineering, Ta-Hsueh Road, Hsinchu, 30010 Taiwan
Search for more papers by this authorMing-Huang Li
National Tsing Hua University, Department of Power Mechanical Engineering, Kuang-Fu Road, Hsinchu, 300044 Taiwan
Search for more papers by this authorMasayoshi Esashi
Search for more papers by this authorSummary
This chapter introduces several fabrication technologies, including different complementary metal oxide semiconductor (CMOS) and post-CMOS processes, to implement CMOS micro-electro mechanical systems (MEMS) devices. It provides the post-CMOS process modules to define multilayer thin films of back end of line and to remove the silicon substrate. The post-CMOS technology has been implemented for many years to attain monolithic integration with the IC technology and avoid thermal budget limitation simultaneously. The chapter explains a few sensors and devices such as resonators, accelerometers, and pressure sensors to show the integration of different post-CMOS process modules to implement MEMS devices on the wafer prepared by the standard 2P4M CMOS platform. It explores the operating concepts and fabrication principles of tactile sensors, infrared sensors, and resonators based on 1P6M CMOS technology where the process modules. It demonstrates the monolithic integration of multiple sensors and sensing circuits to exhibit the capability of CMOS MEMS for the realization of sensing hubs.
References
- Bustillo, J.M., Howe, R.T., and Muller, R.S. (1998). Surface micromachining for microelectromechanical systems. Proc. IEEE 86 (8): 1552–1574.
- Zyung, T., Kim, S.H., Chu, H.Y. et al. (2005). Flexible organic LED and organic thin-film transistor. Proc. IEEE 93 (7): 1265–1272.
- Lee, J.B., Chen, Z., Allen, M.G. et al. (1995). A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply. IEEE J. Microelectromech. Syst. 4 (3): 102–108.
-
Huang, H., Winchester, K.J., Suvorova, A. et al. (2006). Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films.
Mater. Sci. Eng. A
435 (5): 453–459.
10.1016/j.msea.2006.07.015 Google Scholar
- Fan, L.-S., Tai, Y.-C., and Muller, R.S. (1988). Integrated movable micromechanical structures for sensors and actuators. IEEE Trans. Electron Dev. 35 (6): 724–730.
- Fan, L.-S., Tai, Y.-C., and Muller, R.S. (1988). IC-Processed Electrostatic Micro-Motors, 666–669. San Francisco, CA: IEEE IEDM.
- Tang, W.C., Nguyen, T.-C.H., Judy, M.W., and Howe, R.T. (1990). Electrostatic-comb drive of lateral polysilicon resonators. Sens. Actuators A 21: 328–331.
- Pister, K.S.J., Judy, M.W., Burgett, S.R., and Fearing, R.S. (1992). Microfabricated hinges. Sens. Actuators A: Phys. 33: 249–256.
- Wu, M.C. (1997). Micromachining for optical and optoelectronic systems. Proc. IEEE 85 (11): 1833–1856.
- Comtois, J.H. and Bright, V.M. (1997). Applications for surface-micromachined polysilicon thermal actuators and arrays. Sens. Actuators A: Phys. 58: 19–25.
- Muller, R.S. and Lau, K.Y. (1998). Surface-micromachined microoptical elements and systems. Proc. IEEE 86 (8): 1705–1720.
- Langfelder, G., Dellea, S., Zaraga, F. et al. (2012). The dependence of fatigue in microelectromechanical systems on the environment and the industrial packaging. IEEE Trans. Ind. Electron. 59 (12): 4938–4948.
- Renard, S. (2000). Industrial MEMS on SOI. J. Micromech. Microeng. 10: 245–249.
- Perlmutter, M. and Robin, L. (2012). High-performance, low cost inertial MEMS: a market in motion!. Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, 225–229.
- Schaller, R.R. (1997). Moore's law: past, present and future. IEEE Spectr. 34 (6): 52–59.
-
Fedder, G.K. (2005). CMOS-based sensors. In: IEEE Sensors 2005, 125–128. Irvine, CA, USA.
10.1109/ICSENS.2005.1597652 Google Scholar
- Zhang, G., Xie, H., de Rosset, L.E., and Fedder, G.K. (1999). A lateral capacitive CMOS accelerometer with structural curl compensation. 12th IEEE Micro Electro Mechanical Systems (MEMS), Orlando, FL, USA, 606–611.
- Xie, H., Erdmann, L., Zhu, X. et al. (2002). Post-CMOS processing for high-aspect-ratio integrated silicon microstructures. IEEE J. Microelectromech. Syst. 11 (2): 93–101.
- Neumann, J.J. and Gabriel, K.J. (2002). CMOS-MEMS membrane for audio-frequency acoustic actuation. Sens. Actuators A: Phys. 95: 175–182.
- Baltes, H., Paul, O., and Brand, O. (1998). Micromachined thermally based CMOS microsensors. Proc. IEEE 86 (8): 1660–1678.
- Chavan, A.V. and Wise, K.D. (2002). A monolithic fully-integrated vacuum-sealed CMOS pressure sensor. IEEE Trans. Electron Dev. 49 (1): 164–169.
- Hierlemann, A., Brand, O., Hagleitner, C., and Baltes, H. (2003). Microfabrication techniques for chemical/biosensors. Proc. IEEE 91 (6): 839–863.
- Gu, L., Huang, Q.-A., and Qin, M. (2004). A novel capacitive-type humidity sensor using CMOS fabrication technology. Sensors Actuators B Chem. 99 (2-3): 491–498.
- Reinke, J., Fedder, G.K., and Mukherjee, T. (2010). CMOS-MEMS variable capacitors using electrothermal actuation. IEEE J. Microelectromech. Syst. 19 (5): 1105–1115.
- Chen, W.-C., Fang, W., and Li, S.-S. (2011). A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits. J. Micromech. Microeng. 21 (6): 065012.
- Dai, C.-L., Xiao, F.-Y., Juang, Y.-Z., and Chiu, C.-F. (2005). An approach to fabricating microstructures that incorporate circuits using a post-CMOS process. J. Micromech. Microeng. 15 (1): 98–103.
- Fang, W., Li, S.-S., Cheng, C.-L. et al. (2013). “CMOS MEMS: a key technology towards the “more than Moore” era,” in the 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'13), Barcelona, Spain, pp. 2513-2518.
- Sun, C.-M., Wang, C., Tsai, M.-H. et al. (2009). Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process. J. Micromech. Microeng. 19 (1): 015023.
- Tsai, M.-H., Sun, C.-M., Liu, Y.-C. et al. (2009). Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors. J. Micromech. Microeng. 19 (10): 105017.
- Sun, C.-M., Tsai, M.-H., Wang, C. et al. (2009). “Implementation of a monolithic TPMS using CMOS-MEMS technique,” in the 15th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'09), Denver, CO, pp. 1730–1733.
- Qu, H. (2016). CMOS MEMS fabrication technologies and devices. Micromachines (Basel). 7 (1): 14.
- Mansour, R.R. (2013). RF MEMS-CMOS device integration: An overview of the potential for RF researchers. IEEE Microw. Mag. 14 (1): 39–56.
- Chen, C.-Y., Li, M.-H., and Li, S.-S. (2018). CMOS-MEMS resonators and oscillators: A review. Sens. Mater. 30: 733–756.
- Chen, C.-Y., Li, M.-H., Zope, A.A., and Li, S.-S. (Oct. 2019). A CMOS-integrated MEMS platform for frequency stable resonators - Part I: Fabrication, implementation and characterization. IEEE/ASME J. Microelectromech. Syst. (JMEMS) 28 (5): 744–754.
- Liu, Y., Tsai, M., Chen, W. et al. (2013). Temperature-compensated CMOS-MEMS oxide resonators. J. Microelectromech. Syst. 22 (5): 1054–1065.
- Chen, W., Li, M., Liu, Y. et al. (2012). A fully differential CMOS–MEMS DETF oxide resonator with Q >4800 and positive TCF. IEEE Electron Dev. Lett. 33 (5): 721–723.
- Chen, W., Fang, W., and Li, S. (2012). “VHF CMOS-MEMS oxide resonators with Q > 10,000,” presented at the 2012 IEEE International Frequency Control Symposium Proceedings, pp. 1–4.
- Li, M.-H., Chen, C.-Y., Li, C.-S. et al. (2015). Design and characterization of a dual-mode CMOS-MEMS resonator for TCF manipulation. J. Microelectromech. Syst. 24 (2): 446–457.
- Chen, W., Fang, W., and Li, S. (2012). High-Q integrated CMOS-MEMS resonators with deep-submicrometer gaps and quasi-linear frequency tuning. J. Microelectromech. Syst. 21 (3): 688–701.
- Li, C.-S., Li, M.-H., Chin, C.-H. et al. (2003). A piezoresistive CMOS-MEMS resonator with high Q and low TCF. Presented at the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 425–428.
- Chang, J., Li, C., Chen, C., and Li, S. (2015). Performance evaluation of CMOS-MEMS thermal-piezoresistive resonators in ambient pressure for sensor applications. Presented at the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 202–204.
- Liu, T.-Y., Chu, C.-C., Li, M.-H. et al. (2017). CMOS-MEMS thermal-piezoresistive oscillators with high transduction efficiency for mass sensing applications. 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'17), 452–455.
- Lin, F., Tian, W., and Li, P. (2013). CMOS-based capacitive micromachined ultrasonic transducers operating without external DC bias. Presented at the 2013 IEEE International Ultrasonics Symposium (IUS), 1420–1423.
- Chin, C.-H., Li, M.-H., Chen, C.-Y. et al. (2015). A CMOS–MEMS arrayed resonant-gate field effect transistor (RGFET) oscillator. J. Micromech. Microeng. 25 (11): 115025.
- Chen, C.-Y., Li, M.-H., Chin, C.-H., and Li, S.-S. (2016). Implementation of a CMOS-MEMS filter through a mixed electrical and mechanical coupling scheme. J. Microelectromech. Syst. 25 (2): 262–274.
- Chin, C.-H., Li, C.-S., Li, M.-H. et al. (2014). Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor. J. Micromech. Microeng. 24 (9): 095005.
- Su, H.-C., Li, M.-H., Chen, C.-Y., and Li, S.-S. (2015). A single-chip oscillator based on a deep-submicron gap CMOS-MEMS resonator array with a high-stiffness driving scheme. The 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'15), 133–136.
- Lopez, J.L., Verd, J., Uranga, A. et al. (2009). A CMOS–MEMS RF-tunable bandpass filter based on two high-Q 22-MHz polysilicon clamped-clamped beam resonators. IEEE Electron Dev. Lett. 30 (7): 718–720.
- Sarkar, N., Lee, G., and Mansour, R.R. (2013). CMOS-MEMS dynamic FM atomic force microscope. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers'13 & Eurosensors XXVII), 916–919.
- Xie, H. and Fedder, G.K. (2003). Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope. IEEE Sens. J. 3 (5): 622–631.
- Li, S.-S. (2014). CMOS-MEMS resonators. In: Encyclopedia of Nanotechnology (ed. B. Bhushan), 1–19. Dordrecht: Springer Netherlands.
- Li, M.-H., Chen, C.-Y., and Li, S.-S. (2015). A reliable CMOS-MEMS platform for titanium nitride composite (TiN-C) resonant transducers with enhanced electrostatic transduction and frequency stability. Presented at the 2015 IEEE International Electron Devices Meeting (IEDM), 18.4.1–18.4.4.
- Li, S.-S. (2013). CMOS-MEMS resonators and their applications. Presented at the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 915–921.
- Bahl, G., Melamud, R., Kim, B. et al. (2010). Model and observations of dielectric charge in thermally oxidized silicon resonators. J. Microelectromech. Syst. 19 (1): 162–174.
- Dorsey, K.L. and Fedder, G.K. (2010). Dielectric charging effects in electrostatically actuated CMOS MEMS resonators. Presented at the SENSORS, 2010 IEEE, 197–200.
- Li, M.-H., Chen, C.-Y., Li, C.-S. et al. (2015). A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator. J. Microelectromech. Syst. 24 (2): 360–372.
- Dai, C.-L., Kuo, C.-H., and Chiang, M.-C. (2007). Microelectromechanical resonator manufactured using CMOS-MEMS technique. Microelectron. J. 38 (6): 672–677.
- Kovacs, G.T.A., Maluf, N.I., and Petersen, K.E. (1998). Bulk micromachining of silicon. Proc. IEEE 86 (8): 1536–1551.
- Tsai, M., Liu, Y., and Fang, W. (2012). A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes. J. Microelectromech. Syst. 21 (6): 1329–1337.
- Xie, H. and Fedder, G.K. (2001) A CMOS-MEMS lateral-axis gyroscope. 14th IEEE Micro Electro Mechanical Systems (MEMS) (Cat. No.01CH37090), 162–165.
- Münch, U. and Baltes, H. (2000). Industrial CMOS Technology for Thermal Imagers. Hartung-Gorre Verlag.
- Tabata, O. (1996). pH-Controlled TMAH etchants for silicon micromachining. Sens. Actuators A Phys. 53 (1): 335–339.
- Chen, C.-Y., Li, M.-H., Li, C.-S., and Li, S.-S. (2014). Design and characterization of mechanically coupled CMOS-MEMS filters for channel-select applications. Sens. Actuators A Phys. 216: 394–404.
- Kloeck, B., Collins, S.D., de Rooij, N.F., and Smith, R.L. (1989). Study of electrochemical etch-stop for high-precision thickness control of silicon membranes. IEEE Trans. Electron Dev. 36 (4): 663–669.
- Jain, A., Qu, H., Todd, S., and Xie, H. (2005). A thermal bimorph micromirror with large bi-directional and vertical actuation. Sens. Actuators A Phys. 122 (1): 9–15.
- Qu, H. and Xie, H. (2007). Process development for CMOS-MEMS sensors with robust electrically isolated bulk silicon microstructures. J. Microelectromech. Syst. 16 (5): 1152–1161.
- Chen, C.-Y., Li, M.-H., Li, C.-S., and Li, S.-S. (2019). A CMOS-integrated MEMS platform for frequency stable resonators - Part II: Design and analysis. IEEE/ASME J. Microelectromech. Syst. (JMEMS) 28 (5): 755–765.
- Yeh, S. and Fang, W. (2019). Inductive micro tri-axial tactile sensor using a CMOS chip with a coil array. IEEE Electron Dev. Lett. 40 (4): 620–623.
- Chang, K., Lee, Y., Sun, C., and Fang, W. (2017). Novel absorber membrane and thermocouple designs for CMOS-MEMS thermoelectric infrared sensor. 30th IEEE Micro Electro Mechanical Systems (MEMS), 1228–1231.
- Liu, T.-Y., C.-A. Sung, C.-H. Weng, C.-C. Chu, A. A. Zope, G. Pillai, and S.-S. Li. (2018). Gated CMOS-MEMS thermal-piezoresistive oscillator-based PM2.5 sensor with enhanced particle collection efficiency. 31th IEEE Micro Electro Mechanical Systems (MEMS), 75–78.
- Li, C.-S., Li, M.-H., Chen, C.-Y. et al. (2015). A low-voltage CMOS-microelectromechanical systems thermal-piezoresistive resonator With Q > 10,000. IEEE Electron Dev. Lett. 36 (2): 192–194.
- Chu, C.-C., Dey, S., Liu, T.-Y. et al. (2018). Thermal-piezoresistive SOI-MEMS oscillators based on a fully differential mechanically coupled resonator array for mass sensing applications. J. Microelectromech. Syst. 27 (1): 59–72.
- Bhattacharya, S. and Li, S. (2019). A fully differential SOI-MEMS thermal piezoresistive ring oscillator in liquid environment intended for mass sensing. IEEE Sensors J. 19 (17): 7261–7268.
- Dahiya, R.S., Metta, G., Valle, M., and Sandini, G. (2009). Tactile sensing–from humans to humanoids. IEEE Trans. Robot. 26 (1): 1–20.
- Lin, Y.-C., Hsieh, C.-J., Sun, C.-T. et al. (2013). CMOS-based tactile sensors using oxide as sacrificial layer. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 1895–1898.
- Liu, Y., Sun, C., Lin, L. et al. (2011). Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in. J. Microelectromech. Syst. 20 (1): 119–127.
- Lai, W. and Fang, W. (2015). Novel two-stage CMOS-MEMS capacitive-type tactile-sensor with ER-fluid fill-in for sensitivity and sensing range enhancement. 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'15), 1175–1178.
- Li, C., Wu, P., Lee, S. et al. (2008). Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromech. Syst. 17 (2): 334–341.
- Sedaghati, R., Dargahi, J., and Singh, H. (2005). Design and modeling of an endoscopic piezoelectric tactile sensor. Int. J. Solids Struct. 42 (21): 5872–5886.
- Wen, C.-C. and Fang, W. (2008). Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane. Sens. Actuators A Phys. 145–146: 14–22.
- Tu, S., Lai, W., and Fang, W. (2017). Vertical integration of capacitive and piezo-resistive sensing units to enlarge the sensing range of CMOS-MEMS tactile sensor. 30th IEEE Micro Electro Mechanical Systems (MEMS), 1048–1051.
- Wang, H., Kow, J., Raske, N. et al. (2018). Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect. Sens. Actuators A Phys. 271: 44–52.
- Yeh, S.-K., Chang, H.-C., and Fang, W. (2018). Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface. J. Micromech. Microeng. 28 (4): 044005.
- Yeh, S.-K., Chang, H., Lu, C., and Fang, W. (2018). A CMOS-MEMS electromagnetic-type tactile sensor with polymer-filler and chrome-steel ball sensing interface. 2018 IEEE Sensors, 1–4.
- Yeh, S.-K., Lee, J.-H., and Fang, W. (2019). On the detection interfaces for inductive type tactile sensors. Sensors Actuators A Phys. 297: 111545.
- Hudson, R.D. and Hudson, J.W. (Jan. 1975). The military applications of remote sensing by infrared. Proc. IEEE 63 (1): 104–128.
- Stephens, E.R. (1961). Long-path infrared spectroscopy for air pollution research. Infrared Phys. 1 (3): 187–196.
- Gitelman, L., Stolyarova, S., Bar-Lev, S. et al. (2009). CMOS-SOI-MEMS transistor for uncooled IR imaging. IEEE Trans. Electron Dev. 56 (9): 1935–1942.
-
Eminoglu, S., Tanrikulu, M.Y., and Akin, T. (2003). A low-cost 128 x128 uncooled infrared detector array in CMOS process.
J. Microelectromech. Syst.
17 (1): 20–30.
10.1109/JMEMS.2007.910235 Google Scholar
-
Dillner, U., Kessler, E., and Meyer, H.-G. (2013). Figures of merit of thermoelectric and bolometric thermal radiation sensors.
J. Sens. Sens. Syst.
2 (1): 85–94.
10.5194/jsss-2-85-2013 Google Scholar
- Hyseni, G., Caka, N., Hyseni, K., and Teknik, F. (2010). Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics. WSEAS Transducers Circuits Syst. 9: 238–247.
- Völklein, F., Wiegand, A., and Baier, V. (1991). High-sensitivity radiation thermopiles made of Bi-Sb-Te films. Sens. Actuators A Phys. 29 (2): 87–91.
- Socher, E., Bochobza-Degani, O., and Nemirovsky, Y. (2002). Novel CMOS compatible frontside micromachining of integrated thermoelectric sensors. Proceedings of the 21st IEEE Convention of the Electrical and Electronic Engineers in Israel (Cat. No.00EX377), 417–420.
- Modarres-Zadeh, M. and Abdolvand, R. (2014). High-responsivity thermoelectric infrared detectors with stand-alone sub-micrometer polysilicon wires. J. Micromech. Microeng. 24 (12): 125013.
- Chen, C. and Huang, W. (2011). A CMOS-MEMS thermopile with low thermal conductance and a near-perfect emissivity in the 8-14-µm wavelength range. IEEE Electron Dev. Lett. 32 (1): 96–98.
- Völklein, F. and Wiegand, A. (1990). High sensitivity and detectivity radiation thermopiles made by multi-layer technology. Sensors Actuators A Phys. 24 (1): 1–4.
- Shen, T.-W., Chang, K.-C., Sun, C.-M., and Fang, W. (2019). Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design. J. Micromech. Microeng. 29: 024001.
- Discera Inc. (2011). Low-Power Precision CMOS Oscillator Discera DSC1001 Datasheet. San Jose, CA: Discera Inc.
- SiTime Corporation (2013). SiT8208 Ultra Performance Oscillator Datasheet. Sunnyvale, CA: SiTime Corporation.
- Verd, J., Uranga, A., Teva, J. et al. (2006). Integrated CMOS-MEMS with on-chip readout electronics for high-frequency applications. IEEE Electron Dev. Lett. 27 (6): 495–497.
- Lopez, J.L., Verd, J., Teva, J. et al. (2008). Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies. J. Micromech. Microeng. 19: 015002.
- Li, C.-S., Hou, L.-J., and Li, S.-S. (2012). Advanced CMOS-MEMS resonator platform. IEEE Electron Dev. Lett. 33: 272–274.
-
Liu, Y.-S. and Wen, K.-A. (2019). Implementation of a CMOS/MEMS accelerometer with ASIC processes.
Micromachines
10 (30642025): 50.
10.3390/mi10010050 Google Scholar
- Narducci, M., Yu-Chia, L., Fang, W., and Tsai, J. (2013). CMOS MEMS capacitive absolute pressure sensor. J. Micromech. Microeng. 23: 055007.
- Li, M.-H., Chen, W.-C., and Li, S.-S. (2012). Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (3): 346–357.
- Sun, C.-M., Tsai, M.-H., Liu, Y.-C., and Fang, W. (2010). Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique. IEEE Trans. Electron Dev. 57 (7): 1670–1679.
-
Chen, J.-H. and Huang, C.-W. (2018). 0.35 µm CMOS–MEMS low-mechanical-noise micro accelerometer.
Microsyst. Technol.
24 (1): 299–304.
10.1007/s00542-017-3312-1 Google Scholar
- Chiang, C. (2018). Design of a CMOS MEMS accelerometer used in IoT devices for seismic detection. IEEE J. Emerg. Select. Top. Circuits Syst. 8 (3): 566–577.
- Eranna, G., Joshi, B.C., Runthala, D.P., and Gupta, R.P. (2004). Oxide materials for development of integrated gas sensors—a comprehensive review. Crit. Rev. Solid State Mater. Sci. 29 (3-4): 111–188.
- Graf, M., Barrettino, D., Zimmermann, M. et al. (2004). CMOS monolithic metal-oxide sensor system comprising a microhotplate and associated circuitry. IEEE Sensors J. 4 (1): 9–16.
- Kappler, J., Bârsan, N., Weimar, U. et al. (1998). Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius J. Anal. Chem. 361 (2): 110–114.
- Afridi, M., Suehle, J.S., Zaghloul, M.E. et al. (2002). A monolithic CMOS microhotplate-based gas sensor system. IEEE Sensors J. 2 (6): 644–655.
- Yang, M.-Z., Dai, C.-L., Shih, P.-J., and Chen, Y.-C. (2011). Cobalt oxide nanosheet humidity sensor integrated with circuit on chip. Microelectron. Eng. 88 (8): 1742–1744.
- Dai, C.-L., Chen, Y.-C., Wu, C.-C., and Kuo, C.-F. (2010). Cobalt oxide nanosheet and CNT micro carbon monoxide sensor integrated with readout circuit on chip. Sensors 10 (3): 1753–1764.
- Yang, M.-Z., Dai, C.-L., and Wu, C.-C. (2011). A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip. Sensors 11 (12): 11112–11121.
- Yang, M.-Z., Dai, C.-L., and Wu, C.-C. (2014). Sol-gel zinc oxide humidity sensors integrated with a ring oscillator circuit on-a-chip. Sensors 14 (11): 20360–20371.
- Liao, W.-Z., Dai, C.-L., and Yang, M.-Z. (2013). Micro ethanol sensors with a heater fabricated using the commercial 0.18 µm CMOS process. Sensors 13 (10): 12760–12770.
- Yang, M.-Z. and Dai, C.-L. (2015). Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique. Sensors 15 (1): 1623–1634.
- Fong, C.-F., Dai, C.-L., and Wu, C.-C. (2015). Fabrication and characterization of a micro methanol sensor using the CMOS-MEMS technique. Sensors 15 (10): 27047–27059.
- Dai, C.-L., Liu, M.-C., Chen, F.-S. et al. (2007). A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique. Sensors Actuators B Chem. 123 (2): 896–901.
- Hu, Y.-C., Dai, C.-L., and Hsu, C.-C. (2014). Titanium dioxide nanoparticle humidity microsensors integrated with circuitry on-a-chip. Sensors 14 (3): 4177–4188.
- Yang, M.-Z., Dai, C.-L., and Shih, P.-J. (2014). An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 µm CMOS Process. Sensors 14 (7): 12735–12747.
- Lazarus, N., Bedair, S.S., Lo, C.-C., and Fedder, G.K. (2010). CMOS-MEMS capacitive humidity sensor. J. Microelectromech. Syst. 19 (1): 183–191.
- Lazarus, N. and Fedder, G.K. (2011). Integrated vertical parallel-plate capacitive humidity sensor. J. Micromech. Microeng. 21 (6): 065028.
- Dai, C.-L. (2007). A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique. Sens. Actuators B Chem. 122 (2): 375–380.
- Yang, M.-Z., Dai, C.-L., and Lu, D.-H. (2010). Polypyrrole porous micro humidity sensor integrated with a ring oscillator circuit on chip. Sensors 10 (11): 10095–10104.
- Chung, V., Yip, M.-C., and Fang, W. (2015). Resorcinol–formaldehyde aerogels for cmos-mems capacitive humidity sensor. Sens. Actuators B Chem. 214: 181–188.
- Bedair, S.S. and Fedder, G.K. (2004). CMOS MEMS oscillator for gas chemical detection. IEEE SENSORS 2004, Vienna, 955–958.
- Voiculescu, I., Zaghloul, M.E., McGill, R.A. et al. (2005). Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. IEEE Sensors J. 5 (4): 641–647.
- Tsai, H.-H., Lin, C.-F., Juang, Y.-Z. et al. (2010). Multiple type biosensors fabricated using the CMOS Bio MEMS platform. Sens. Actuators B Chem. 144 (2): 407–412.
- Li, D.-C., Yang, P.-H., and Lu, M.S.-C. (2010). CMOS open-gate ion-sensitive field-effect transistors for ultrasensitive dopamine detection. IEEE Trans. Electron Dev. 57 (10): 2761–2767.
- Lai, W.-A., C.-H. Lin, Y.-S. Yang, and M. S.-C. Lu (2012). Ultrasensitive detection of avian influenza virus by using CMOS impedimetric sensor arrays. 25th IEEE Micro Electro Mechanical Systems (MEMS) (February 2012), 894–897.
- Yin, T.-I., Zhao, Y., Lin, C.-F. et al. (2011). The application of capillary force to a cantilever as a sensor for molecular recognition. Appl. Phys. Lett. 98 (10): 104102.
- Yin, T.-I., Zhao, Y., Horak, J. et al. (2013). A micro-cantilever sensor chip based on contact angle analysis for a label-free troponin I immunoassay. Lab Chip 13 (5): 834–842.
- Huang, Y.-J., Huang, C.-W., Lin, T.-H. et al. (2013). A CMOS cantilever-based label-free DNA SoC with improved sensitivity for hepatitis B virus detection. IEEE Trans. Biomed. Circuits Syst. 7 (6): 820–831.
- Huang, C.-W., Hsueh, H.-T., Huang, Y.-J. et al. (2013). A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV). Sensors Actuators B Chem. 181: 867–873.
- Neumann, J.J. and Gabriel, K.J. (2003). A fully-integrated CMOS-MEMS audio microphone. 12th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'03), vol. 1, 230–233.
- Tang, P.-K., Wang, P.-H., Li, M.-L., and Lu, M.S.-C. (2011). Design and characterization of the immersion-type capacitive ultrasonic sensors fabricated in a CMOS process. J. Micromech. Microeng. 21 (2): 025013.
- Li, M.-L., Wang, P.-H., Liao, P.-L., and Lu, M.S.-C. (2011). Three-dimensional photoacoustic imaging by a CMOS micromachined capacitive ultrasonic sensor. IEEE Electron Dev. Lett. 32 (8): 1149–1151.
- Cheng, C.-L., Chang, H.-C., Chang, C.-I., and Fang, W. (2015). Development of a CMOS MEMS pressure sensor with a mechanical force-displacement transduction structure. J. Micromech. Microeng. 25 (12): 125024.
- Lin, W.-C., C.-L. Cheng, C.-L. Wu, and W. Fang (2017). Sensitivity improvement for CMOS-MEMS capacitive pressure sensor using double deformarle diaphragms with trenches. 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'17), 782–785.
- Dai, C.-L., Lu, P.-W., Wu, C.-C., and Chang, C. (2009). Fabrication of wireless micro pressure sensor using the CMOS process. Sensors 9 (11): 8748–8760.
- Uddin, A., Milaninia, K., Chen, C., and Theogarajan, L. (2011). Wafer scale integration of CMOS chips for biomedical applications via self-aligned masking. IEEE Trans. Compon. Packag. Manuf. Technol. 1 (12): 1996–2004.
- Huang, Y. and Mason, A.J. (2013). Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13 (19): 3929–3934.
- Uddin, A., Yemenicioglu, S., Chen, C.-H. et al. (2013). Integration of solid-state nanopores in a 0.5 µm CMOS foundry process. Nanotechnology 24 (15): 155501.
- Lindsay, M., Bishop, K., Sengupta, S. et al. (2018). Heterogeneous integration of CMOS sensors and fluidic networks using wafer-level molding. IEEE Trans. Biomed. Circuits Syst. 12 (5): 1046–1055.
- Ghafar-Zadeh, E., Sawan, M., and Therriault, D. (2007). Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Sens. Actuators A Phys. 134 (1): 27–36.
- Chien, J.-C., Ameri, A., Yeh, E.-C. et al. (2018). A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies. Lab Chip 18 (14): 2065–2076.
- Chiu, Y., Chen, B.-T., and Hong, H.-C. (2015). Integrated CMOS MEMS liquid capacitive inclinometer. 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'15), 1152–1155.
- Hagleitner, C., Hierlemann, A., Lange, D. et al. (2001). Smart single-chip gas sensor microsystem. Nature 414: 293–296.
- Hagleitner, C., Lange, D., Hierlemann, A. et al. (2002). CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid State Circuits 37 (12): 1867–1878.
- Li, Y., Vancura, C., Barrettino, D. et al. (2007). Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes. Sens. Actuators B Chem. 126 (2): 431–440.
- Eddy, D.S. and Sparks, D.R. (1998). Application of MEMS technology in automotive sensors and actuators. Proc. IEEE 86 (8): 1747–1755.
- Ishihara, T., Suzuki, K., Suwazono, S. et al. (1987). CMOS integrated silicon pressure sensor. IEEE J. Solid State Circuits 22 (2): 151–156.
- Baskett, I., Frank, R., and Ramsland, E. (1991). The design of a monolithic, signal conditioned pressure sensor. Proceedings of the IEEE 1991 Custom Integrated Circuits Conference IEEE, 27.331–27.3.4.
- Sugiyama, S., Takigawa, M., and Igarashi, I. (1983). Integrated piezoresistive pressure sensor with both voltage and frequency output. Sens. Actuators 4: 113–120.
- Barrettino, D., Graf, M., Taschini, S. et al. (2006). CMOS monolithic metal–oxide gas sensor microsystems. IEEE Sensors J. 6 (2): 276–286.
- Chiu, Y., Huang, T.-C., and Hong, H.-C. (2014). A three-axis single-proof-mass CMOS-MEMS piezoresistive accelerometer with frequency output. Sens. Mater. 26 (2): 95–108.
- Lu, C., Lemkin, M., and Boser, B.E. (1995). A monolithic surface micromachined accelerometer with digital output. IEEE J. Solid State Circuits 30 (12): 1367–1373.
- Boser, B.E. and Howe, R.T. (1996). Surface micromachined accelerometers. IEEE J. Solid State Circuits 31 (3): 366–375.
- Lemkin, M. and Boser, B.E. (1999). A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J. Solid State Circuits 34 (4): 456–468.
- Luo, H., Zhang, G., Carley, L.R., and Fedder, G.K. (2002). A post-CMOS micromachined lateral accelerometer. J. Microelectromech. Syst. 11 (3): 188–195.
- Wu, J., Fedder, G.K., and Carley, L.R. (2004). A low-noise low-offset capacitive sensing amplifier for a 50-μg/rtHz monolithic CMOS MEMS accelerometer. IEEE J. Solid State Circuits 39 (5): 722–730.
- Tan, S.-S., Liu, C.-Y., Yeh, L.-K. et al. (2011). An integrated low-noise sensing circuit with efficient bias stabilization for CMOS MEMS capacitive accelerometers. IEEE Trans. Circuits Syst. I: Regular Papers 58 (11): 2661–2672.
- Michalik, P., J. M. Sánchez-Chiva, D. Fernández, and J. Madrenas, (2015). CMOS BEOL-embedded lateral accelerometer. 2015 IEEE Sensors Conference, Busan, South Korea (November 2015).
- Liao, S.-H., Chen, W.-J., and Lu, M.S.-C. (2013). A CMOS MEMS capacitive flow sensor for respiratory monitoring. IEEE Sensors J. 13 (5): 1401–1402.
- Xie, H. and Fedder, G.K. (2002). Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS. Sens. Actuators A Phys. 95 (2-3): 212–221.
- Ko, C.-T., Tseng, S.-H., and Lu, M.S.-C. (2006). A CMOS micromachined capacitive tactile sensor with high-frequency output. J. Microelectromech. Syst. 15 (6): 1708–1714.
- Chiu, Y., Hong, H.-C., and Wu, P.-C. (2013). Development and characterization of a CMOS-MEMS accelerometer with differential LC-tank oscillators. J. Microelectromech. Syst. 22 (6): 1285–1295.
- Chiu, Y., Hong, H.-C., and Lin, C.-W. (2016). Inductive CMOS MEMS accelerometer with integrated variable inductors. 29th IEEE Micro Electro Mechanical Systems (MEMS), 974–977.
- Chiu, Y., Hong, H.-C., and Chang, C.-M. (2017). Three-axis CMOS MEMS inductive accelerometer with novel Z-axis sensing scheme. 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'17), 410–413.
- Chiang, C.-H., Chou, M.-C., Hsieh, P.-H., and Lu, M.S.-C. (2016). Design and characterization of a CMOS MEMS capacitive oscillator for resonant sensing in liquids. IEEE Sens. J. 16 (5): 1136–1142.
- Huang, Y.-J., Chang, T.-L., and Chou, H.-P. (2009). Study of symmetric microstructures for CMOS multilayer residual stress. Sens. Actuators A Phys. 150: 237–242.
- Fang, W. and Wickert, J.A. (1996). Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J. Micromech. Microeng. 6: 301–309.
- Fang, W. and Wickert, J.A. (1994). Post buckling of micromachined beams. J. Micromech. Microeng. 4: 116–122.
- Mehregany, M., Howe, R.T., and Senturia, S.D. (1987). Novel microstructures for the in situ measurement of the mechanical properties of thin films. J. Appl. Phys. 62: 3579–3584.
- Guckel, H., Randazzo, T., and Burns, D.W. (1985). A simple technique for the determination of mechanical strain in thin films with applications to polysilicon. J. Appl. Phys. 57: 1671–1675.
- Ceiler, M.F. Jr., Kohl, P.A., and Bidstrup, S.A. (1995). Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures. J. Electrochem. Soc. 142 (6): 2067–2071.
- EerNisse, E.P. (1979). Stress in thermal SiO2 during growth. Appl. Phys. Lett. 35: 8–10.
- Greek, S. and Chitica, N. (1999). Deflection of surface micromachined devices due to internal, homogeneous or gradient stresses. Sensors Actuators A Phys. 78: 1–7.
- Cheng, C.-L., Tsai, M.-H., and Fang, W. (2015). Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers. J. Micromech. Microeng. 25: 025014.
- Valle, J., Fernández, D., Madrenas, J., and Barrachina, L. (2017). Curvature of BEOL cantilevers in CMOS-MEMS processes. J. Microelectromech. Syst. 26 (4): 895–909.
- Lakdawala, H. and Fedder, G.K. (1999). Analysis of temperature-dependent residual stress gradients in CMOS micromachined structures. Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'99), Sendai, Japan (June 1999), 526–529.
- Tsai, M.-H., Liu, Y.-C., Liang, K.-C., and Fang, W. (2015). Monolithic CMOS-MEMS pure oxide tri-axis accelerometers for temperature stabilization and performance enhancement. J. Microelectromech. Syst. 24 (6): 1916–1927.
- Chang, C.-I., Tsai, M.-H., Sun, C.-M., and Fang, W. (2014). Development of CMOS-MEMS in-plane magnetic coils for application as a three-axis resonant magnetic sensor. J. Micromech. Microeng. 24: 035016.
- Yen, T.-H., Tsai, M.-H., Chang, C.-I. et al. (2011). Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design. IEEE Sensors Conference, Limerick, Ireland (October 2011), 145–148.
- Fedder, G.K., Howe, R.T., Liu, T.-J.K., and Quevy, E.P. (2008). Technologies for cofabricating MEMS and electronics. Proc. IEEE 96 (2): 306–322.
- Neumann, J.J. and Gabriel, K.J. (2005). CMOS-MEMS Acoustic Devices, CMOS-MEMS, 1e, 193–224. Wiley-VCH.
- Timoshenko, S. (1925). Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11: 233–255.
- Modlinski, R., Witvrouw, A., Ratchev, P. et al. (2004). Creep characterization of Al alloy thin films for use in MEMS applications. Microelectron. Eng. 76: 272–278.
- Jiang, L., Cai, Y., Liu, H., and Zhao, Y. (2013). A micromachined monolithic 3 axis accelerometer based on convection heat transfer. IEEE NEMS Conference, Suzhou, China (April 2013), 248–251.
- Rüffer, D., Hoehne, F., and Bühler, J. (2018). New digital metal-oxide (MOx) sensor platform. Sensors 18: 1052.
- Cheng, C.-W., Liang, K.-C., Chu, C.-H. et al. (2013). Single chip process for sensors implementation, integration, and condition monitoring. Proceedings of the Seventh International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'13), Barcelona, Spain (June 2013), 730–733.
- Petersen, K.E. (1982). Silicon as a mechanical material. Proc. IEEE 70 (5): 420–457.
- Hornbeck, L.J. (1997). Digital light processing for high-brightness, high-resolution applications. Proc. SPIE 3013: 27–40.
- Ruiz, P.G., Meyer, K.D., and Witvrouw, A. (2013). Poly-SiGe for MEMS-Above-CMOS Sensors, 1e. Springer.
- Cheng, C.-W., Chu, C.-H., Hung, L.-M., and Fang, W. (2017). 12 inch MEMS process for sensors implementation and integration. Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'17), Kaohsiung, Taiwan (June 2017), 402–405.
- Li, M.-H., Chen, C.-Y., Liu, C.-Y., and Li, S.-S. (2016). A sub-150μW BEOL-embedded CMOS-MEMS oscillator with a 138dBΩ ultra-low-noise TIA. IEEE Electron Dev. Lett. 37 (5): 648–651.
- Liu, C.-Y., Li, M.-H., Ranjith, H.G., and Li, S.-S. (2016). A 1 MHz 4 ppm CMOS-MEMS oscillator with built-in self-test and sub-mW ovenization power. Proceedings of the, IEEE International Electron Devices Meeting (IEDM'16), San Francisco, USA (3–7 December 2016), 26.7.1–26.7.4.
- Chiu, W.-C., Li, M.-H., Chou, C., and Li, S.-S. (2016). A ring-down technique implemented in CMOS-MEMS resonator circuits for wide-range pressure sensing applications. 2016 IEEE International Frequency Control Symposium (IFCS'16), New Orleans, Louisiana, USA (9–12 May 2016), 1–3.
- Sarkar, N., Mansour, R.R., Patange, O., and Trainor, K. (2011). CMOS-MEMS atomic force microscope 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, 2610–2613.
- Ghaffari, S., Ng, E., Ahn, C.H. et al. (2015). Accurate modeling of quality factor behavior of complex silicon MEMS resonators. J. Microelectromech. Syst. 24 (2): 276–288.
- Melamud, R., Chandorkar, S.A., Kim, B. et al. (2009). Temperature-Insensitive Composite Micromechanical Resonators. J. Microelectromech. Syst. 18 (6): 1409–1419.
- Ghaffari, S., Chandorkar, S.A., Wang, S. et al. (2013). Quantum limit of quality factor in silicon micro and nano mechanical resonators. Scientific Rep. 3: 3244.
- Li, M.-H., Li, C.-S., and Li, S.-S. (2015). Exploring the Q-factor limit of temperature compensated CMOS-MEMS resonators. Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS'15), Estoril, Portugal (18–22 January 2015), 853–856.
- Kim, B., Hopcroft, M.A., Candler, R.N. et al. (2008). Temperature dependence of quality factor in MEMS resonators. J. Microelectromech. Syst. 17 (3): 755–766.
- Wang, S., Bahr, B., Chen, W.-C. et al. (2015). Temperature coefficient of frequency modeling for CMOS-MEMS bulk mode composite resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (T-UFFC) 62 (6): 1166–1178.
- Lin, Y.-C., Guney, M.G., and Fedder, G.K. (2019). ALD titania sidewalls on a CMOS-MEMS resonator oscillator and effects on resonant frequency drift. 32nd IEEE Micro Electro Mechanical Systems (MEMS), Seoul, Korea (27–31 January 2019), 640–643.
- Li, M.-H., Chen, C.-Y., and Li, S.-S. (2018). A study on the design parameters for MEMS oscillators incorporating nonlinearities. IEEE Trans. Circuits Syst. I Reg. Papers 65 (10): 3424–3434.
- H. K. Lee, P. A. Ward, A. E. Duwel, J. C. Salvia, Qu, Y.Q., Melamud, R., Chandorkar, S.A. et al. (2011). Verification of the phase-noise model for MEMS oscillators operating in the nonlinear regime. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (June 2011), 510–513.
- Villanueva, L.G., Kenig, E., Karabalin, R.B. et al. (2013). Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110: 177208.
- Kenig, E., Cross, M.C., Villanueva, L.G. et al. (2012). Optimal operating points of oscillators using nonlinear resonators. Phys. Rev. E 86: 056207.
- Li, M.-H., Chen, C.-Y., Chin, C.-H. et al. (2014). Optimizing the close-to-carrier phase noise of monolithic CMOS-MEMS oscillators using bias-dependent nonlinearity, Technical Digest IEEE International Electron Devices Meeting (IEDM'14), San Francisco, CA (December 2014), 22.3.1–22.3.4.
- International Technology Roadmap for Semiconductors (2005). Edition.