Buried Channels in Monolithic Si
Kazusuke Maenaka
University of Hyogo, Department of Electronics and Computer Science, Graduate School of Engineering, 2167 Shosha, Himeji, 671–2280 Japan
Search for more papers by this authorKazusuke Maenaka
University of Hyogo, Department of Electronics and Computer Science, Graduate School of Engineering, 2167 Shosha, Himeji, 671–2280 Japan
Search for more papers by this authorMasayoshi Esashi
Search for more papers by this authorSummary
A micro-electro mechanical system (MEMS) technology has been developed with the integrated circuit (IC) technology. Buried channels in large-scale integration will first be described before the buried channel in MEMS. The buried channel can be vacuum sealed, and wafers with the silicon on nothing (SON) structure can be the starting material for IC. Many types of practical MEMS devices, especially sensors, can be designed based on the fabrication process. The SON is especially useful for applications of pressure sensors because the basic structure involving a diaphragm with a vacuum cavity is directly applicable to the pressure-sensing mechanism. The chapter discusses the concept and the applications of silicon monolithic buried cavity or channel in the MEMS technology utilizing hydrogen annealing. The SON technology can be realized using simple process steps: only one lithography with etching and hydrogen annealing.
References
- Burgener, M.L. and Reedy, R.E. (1995). Minimum charge FET fabricated on an ultrathin silicon on sapphire wafer. US Patent 5,416,043A.
- Kuo, J.B. and Lin, S.-C. (2001). Low-Voltage SOI CMOS VLSI Devices and Circuits. Wiley.
- Kilchytska, V., Chung, T.M., Olbrechts, B. et al. (2007). Electrical characterization of true silicon-on-nothing MOSFETs fabricated by Si layer transfer over a pre-etched cavity. Solid-State Electron. 51 (9): 1238–1244.
- Bustillo, J.M., Howe, R.T., and Muller, R.S. (1998). Surface micromachining for microelectromechanical systems. Proc. IEEE. 86 (8): 1552–1574.
- Liu, C. and Tai, Y.C. (1999). Sealing of micromachined cavities using chemical vapor deposition methods: characterization and optimization. IEEE J. MEMS 8 (2): 135–145.
- Habuka, H., Tsunoda, H., Mayusumi, M. et al. (1995). Roughness of silicon surface heated in hydrogen ambient. J. Electrochem. Soc. 142 (9): 3092–3097.
- Sato, N. and Yonehara, T. (1994). Hydrogen annealed silicon-on-insulator. App. Phys. Lett. 65: 1924–1926.
- Kumagai, Y., Namba, K., Komeda, T., and Nishioka, Y. (1998). Formation of periodic step and terrace structure on Si(100) surface during annealing in hydrogen diluted with inert gas. J. Vac. Sci. Technol. A 16 (3): 1775–1778.
- Komeda, T. and Kumagai, Y. (1998). Si(001) surface variation with annealing in ambient H2 . Phys. Rev. B 58 (3): 1385–1391.
- Keeffe, M.E., Umbach, C.C., and Blakely, J.M. (1994). Surface self-diffusion on Si from the evolution of periodic atomic step arrays. J. Phys. Chem. Solids 55 (10): 965–973.
- Danielson, D.T., Sparacin, D.K., Michel, J., and Kimerling, L.C. (2006). Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration. J. Appl. Phys. 100: 083507.
- Burhanudin, Z.A., Nuryadi, R., Ishikawa, Y., and Tabe, M. (2005). Thermally-induced formation of Si wire array on an ultrathin (111) silicon-on-insulator substrate. Appl. Phys. Lett. 87: 121905.
- Yang, B., Zhang, P., Savage, D.E. et al. (2005). Self-organization of semiconductor nanocrystals by selective surface faceting. Phys. Rev. B 72: 235413.
- Sato, T., Mizushima, I., Kito, M. et al. (1998). Trench transformation technology using hydrogen annealing for realizing highly reliable device structure with thin dielectric films, Symposium on VLSI tech. Dig. Tech. Papers: 206–207.
- Sato, T., Mitsutake, K., Mizushima, I., and Tsunashima, Y. (2000). Micro-structure transformation of silicon: a newly developed transformation technology for patterning silicon surfaces using the surface migration of silicon atoms by hydrogen annealing. Jpn. J. Appl. Phys. 39 (Part 1, 9A): 5033–5038.
- Mizushima, I., Sato, T., Taniguchi, S., and Tsunashima, Y. (2000). Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure. Appl. Phys. Lett. 77 (20): 3290–3292.
- Sato, T., Mizushima, I., Taniguchi, S. et al. (2004). Fabrication of silicon-on-nothing structure by substrate engineering using the empty-space-in-silicon formation technique. Jpn. J. App. Phys. 43 (1): 12–18.
- Sato, T., Matsuo, M., Mizushima, I. et al. (2007). Method of making empty space in silicon, US Patent 7,235,456 B2.
- Kuribayashi, H. and Shimizu, R. (2004). Hydrogen pressure dependence of trench corner rounding during hydrogen annealing. J. Vac. Sci. Technol. A 22 (4): 1406–1409.
- Kuribayashi, H., Hiruta, R., Shimizu, R. et al. (2004). Investigation of shape transformation of silicon trenches during hydrogen annealing. Jpn. J. Appl. Phys. 43 (4A): 468–470.
- Mullins, W.W. (1957). Theory of thermal grooving. J. Appl. Phys. 28 (3): 333–339.
- Hiruta, R., Kuribayashi, H., Shimizu, R. et al. (2006). Flattening of micro-structured Si surfaces by hydrogen annealing. Appl. Surf. Sci. 252: 5279–5283.
-
Song, J., Zhang, L., and Kim, D. (2016). Design of silicon-on-nothing structure based on multi-physics analysis.
Multiscale Multiphys. Mech.
1 (3): 225–231.
10.12989/mmm.2016.1.3.225 Google Scholar
- Sudoh, K., Iwasaki, H., Hiura, R. et al. (2009). Void shape evolution and formation of silicon-on-nothing structures during hydrogen annealing of hole arrays on Si(001). J. Appl. Phys. 105: 083536.
- Hiruta, R., Kuribayashi, H., Shimazu, S. et al. (2004). Evolution of surface morphology of Si-trench sidewalls during hydrogen annealing. Appl. Surf. Sci. 237: 63–67.
- Su, J., Zhang, X., Zhou, G. et al. (2018). A review: crystalline silicon membranes over sealed cavities for pressure sensors by using silicon migration technology. J. Semicond. 39 (7): 071005.
- Sagazan, O.D., Denoual, M., Guil, P. et al. (2005). Horizontal buried channels in monocrystalline silicon. Proceedings of the International Conference on MEMS, 661–664. (Sagazan, O.D, Denoual, M., Guil, P., et al. (2006). Horizontal buried channels in monocrystalline silicon. Microsyst. Technol. 12 (10–11) 959–963).
-
Lehmann, V. (2002). Electrochemistry of Silicon. Weinheim: Wiley-VCH.
10.1002/3527600272 Google Scholar
- Armbruster, S., Schafer, F., Lammel, G. et al. (2003). A novel micromachining process for the fabrication of monocrystalline Si-membranes using porous silicon. International Conference on Transducers, 246–249
- Lee, M.-C.M. and Wu, M.C. (2006). Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction. J. Microelectromech. Syst. 15 (2): 338–343.
- Liu, S.T., Chan, L., and Borland, J.O. (1987). Reaction kinetics of SiO2/Si(100) interface in H2 ambient in a reduced pressure epitaxial reactor. Proceedings of the 10th International Conference on Chemical Vapor Deposition, Pennington, NJ, 428–434.
- Ebschke, S., Poloczek, R.R., Kallis, K.T., and Fiedler, H.L. (2013). Creating a Monocrystalline membrane via etching and sealing of nanoholes considering its sealing behavior. J. Nano Res. 25: 49–54.
- Hao, X.C., Tanaka, S., Masuda, A. et al. (2014). The application of silicon on nothing structure for developing a novel capacitive absolute pressure sensor. IEEE Sens. J. 14 (3): 808–815.
- Knese, K., Armbruster, S., Weber, H. et al. (2009). Novel technology for capacitive pressure sensors with monocrystalline silicon membranes. 22th IEEE International Conference on Micro Electro Mechanical Systems, 697–700.
- Villa, F.F., Barlocchi, G., Corona, P., Vigna, B., and Baldo, L. (2004). Halbleiterdrucksensor und Verfahren zur Herstellung, Patent, EP1577656B1.
-
Kravchenko, A., Komenko, V., and Fischer, W.-J. (2018). Silicon-on-nothing micro-Pirani gauge for interior-pressure measurement.
Proceedings
2 (13): 1079. https://doi.org/10.3390/ proceedings2131079.
10.3390/proceedings2131079 Google Scholar
-
Komenko, V., Kravchenko, A., and Fischer, W.-J. (2018). Silicon-on-nothing IR-emitter for gas sensing applications.
Proceedings
2 (13): 1080. https://doi.org/10.3390/proceedings2131080.
10.3390/proceedings2131080 Google Scholar
- Depauw, V., Gordon, I., Beaucarne, G. et al. (2009). Proof of concept of an epitaxy-free layer-transfer process for silicon solar cells based on the reorganisation of macropores upon annealing. Mat. Sci. Eng. B 159–160: 286–290.