Metal Bonding
Joerg Froemel
Tohoku University, Advanced Institute for Materials Research, Aoba-ku, Katahira 2-1-1, Sendai, 980-8577 Japan
Search for more papers by this authorJoerg Froemel
Tohoku University, Advanced Institute for Materials Research, Aoba-ku, Katahira 2-1-1, Sendai, 980-8577 Japan
Search for more papers by this authorMasayoshi Esashi
Search for more papers by this authorSummary
Aluminum, copper, and gold are commonly used metallization materials for microelectronic and micro electro mechanical system applications. Typically metal wafer bonding technologies are diffusion-based methods. Metal-based wafer bonding uses relatively low temperatures. Solid liquid interdiffusion bonding (SLID) is a possible way to bond at a low temperature with a resulting interface that is stable at temperatures higher than the bonding temperature. Besides semiconductor wafer substrates, other materials can also be used with SLID bonding, example, ceramics or glasses. At first Cu/Sn SLID bonding was used in the field of 3D integration by using solder balls. Metal thermocompression bonding is a form of solid state bonding, more specifically diffusion bonding. The bonding happens in three phases: interface formation, grain reorientation, and grain growth. A eutectic is a mixture of two materials that solidifies or melts at a temperature that is lower than the melting temperature of each material.
References
- Bernstein, L. (1966). Semiconductor joining by the solid-liquid-interdiffusion (SLID) process. J. Electrochem. Soc. 113 (12): 1282–1288.
- Wolffenbuttel, R.F. and Wise, K.D. (1994). Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature. Sens. Actuators A. Phys. 43 (1–3): 223–229.
- Zavracky, P.M. and Vu, B. (1995). Patterned eutectic bonding with Al/Ge thin films for MEMS. Micromach. Microfabricat. Process Technol. 2639: 46–52.
- Matijasevic, G.S., Lee, C.C., and Wang, C.Y. (1993). AuSn alloy phase diagram and properties related to its use as a bonding medium. Thin Solid Films 223 (2): 276–287.
- Tsau, C.H., Schmidt, M.A., and Spearing, S.M. (2000). Characterization of low temperature, wafer-level gold-gold thermocompression bonds. Mater. Res. Soc. Sympos. Proc. 605: 171–176.
- Fan, A., Rahman, A., and Reif, R. (Oct. 1999). Copper wafer bonding. Electrochem. Solid-State Lett. 2 (10): 534–536.
- Braeuer, J., Besser, J., Wiemer, M., and Gessner, T. (2012). A novel technique for MEMS packaging: reactive bonding with integrated material systems. Sensors Actuat. A: Phys. 188: 212–219.
- Chen, Y.-C., So, W.W., and Lee, C.C. (1997). A fluxless bonding technology using indium-silver multilayer composites. IEEE Trans. Components, Packag. Manuf. Technol. Part A 20 (1): 46–51.
- Lee, C.C. and Wang, C.Y. (Feb. 1992). A low temperature bonding process using deposited gold-tin composites. Thin Solid Films 208 (2): 202–209.
- Bartels, F., Morris, J.W., Dalke, G., and Gust, W. (1994). Intermetallic phase formation in thin solid-liquid diffusion couples. J. Electron. Mater. 23 (8): 787–790.
- Froemel, J., Lin, Y.-C., Wiemer, M. et al. (2012). Low temperature metal interdiffusion bonding for micro devices. 2012 3rd IEEE International Workshop on Low Temperature Bonding for 3D Integration, 163–163.
- Froemel, J., Baum, M., Wiemer, M., and Gessner, T. (2015). Low-temperature wafer bonding using solid-liquid inter-diffusion mechanism. J. Microelectromech. Syst. 24 (6): 1973–1980.
- Tian, Y., Wang, N., Li, Y., and Wang, C. (2012). Mechanism of low temperature Cu-In Solid-Liquid Interdiffusion bonding in 3D package. ICEPT-HDP 2012 Proceedings – 2012 13th International Conference on Electronic Packaging Technology and High Density Packaging, 216–218.
- Panchenko, I., Bickel, S., Meyer, J. et al. (2017). Low temperature Cu/In bonding for 3D integration. Proceedings of 2017 5th International Workshop on Low Temperature Bonding for 3D Integration, LTB-3D 2017, 17.
- Sohn, Y.C., Wang, Q., Ham, S.J. et al. (2007). Wafer-level low temperature bonding with Au-In system. Proceedings - Electronic Components and Technology Conference, 633–637.
- MacKay, C.A. (1993). Amalgams for improved electronics interconnection. IEEE Micro 13 (2): 46–58.
- Lu, D. and Heck, J. (2004). Microelectronic package having chamber sealed by material including one or more intermetallic compounds. US7061099B2.
-
Munding, A., Hübner, H., Kaiser, A. et al. (2008). Cu/Sn solid–liquid interdiffusion bonding. In: Wafer Level 3-D ICs Process Technology. Integrated Circuits and Systems (eds. C.S. Tan, R.J. Gutmann and L.R. Reif), 1–39. Boston, MA: Springer US.
10.1007/978-0-387-76534-1_7 Google Scholar
- Haubold, M., Baum, M., Schubert, I. et al. (2011). Low temperature wafer bonding technologies. 18th European Microelectronics & Packaging Conference, 1–8.
- Heck, J.M., Arana, L.R., Read, B., and Dory, T.S. (2005). Ceramic via wafer-level packaging for mems. Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005, vol. PART B, 1069–1074.
- Belov, N., Chou, T.-K., Heck, J. et al. (2009). Thin-layer Au-Sn solder bonding process for wafer-level packaging, electrical interconnections and MEMS applications. Proceedings of the 2009 IEEE International Interconnect Technology Conference, IITC 2009, 128–130.
- Aasmundtveit, K.E., Tollefsen, T.A., Luu, T.-T. et al. (2013). Solid-Liquid Interdiffusion (SLID) bonding—Intermetallic bonding for high temperature applications. EMPC 2013: European Microelectronics and Packaging Conference, 1–6.
- Kirkendall, E.O. (1942). Diffusion of zinc in alpha brass. Trans. AIME 147: 104–110.
- Cogan, S., Kwon, S., Klein, J., and Rose, R. (1983). Fabrication of large diameter external-diffusion processed Nb3Sn composites. IEEE Trans. Magn. 19 (3): 1139–1142.
- Yu, C., Yang, Y., Li, P. et al. (2012). Suppression of Cu3Sn and Kirkendall voids at Cu/Sn-3.5Ag solder joints by adding a small amount of Ge. J. Mater. Sci. Mater. Electron. 23 (1): 56–60.
- Chen, K.N., Fan, A., and Reif, R. (2002). Interfacial morphologies and possible mechanisms of copper wafer bonding. J. Mater. Sci. 37 (16): 3441–3446.
- Yun, C.H., Martin, J.R., Tarvin, E.B., and Winbigler, J.T. (2008). Al to Al wafer bonding for MEMS encapsulation and 3-D interconnect. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 810–813.
- Liu, C., Hirano, H., Froemel, J., and Tanaka, S. (2017). Wafer-level vacuum sealing using AgAg thermocompression bonding after fly-cut planarization. Sensors Actuat. A Phys. 261: 210–218.
-
Takahata, T., Hirano, H., Froemel, J. et al. (2018). Wafer-level high vacuum packaging using titanium thin film as bonding and gettering material.
IEEJ Trans. Sensors Micromach. (in Japanese)
138 (8): 387–391.
10.1541/ieejsmas.138.387 Google Scholar
- Froemel, J., Baum, M., Wiemer, M. et al. (2011). Investigations of thermocompression bonding with thin metal layers. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS'11, 990–993.
- Al Farisi, M.S., Hirano, H., Frömel, J., and Tanaka, S. (2017). Wafer-level hermetic thermo-compression bonding using electroplated gold sealing frame planarized by fly-cutting. J. Micromech. Microeng. 27 (1): 015029.
- Kon, H., Uomoto, M., and Shimatsu, T. (2014). Room temperature bonding of wafers in air using Au-Ag alloy films. Proceedings of 2014 4th IEEE International Workshop on Low Temperature Bonding for 3D Integration, LTB-3D 2014, 28.
- Ishida, H., Ogashiwa, T., Kanehira, Y. et al. (2012). Low-temperature, surface-compliant wafer bonding using sub-micron gold particles for wafer-level MEMS packaging. Proceedings – Electronic Components and Technology Conference, 1140–1145.
- Okada, H., Itoh, T., Froemel, J. et al. (2005). Room temperature vacuum sealing using surfaced activated bonding with Au thin films. Digest of Technical Papers - International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS '05, vol. 1, 932–935.
- Chen, K.N., Tan, C.S., Fan, A., and Reif, R. (2004). Morphology and bond strength of copper wafer bonding. Electrochem. Solid-State Lett. 7 (1): G14–G16.
- Chen, K.N., Chang, S.M., Shen, L.C., and Reif, R. (2006). Investigations of strength of copper-bonded wafers with several quantitative and qualitative tests. J. Electron. Mater. 35 (5): 1082–1086.
- Baum, M., Hofmann, L., Wiemer, M. et al. (2013). Development and characterisation of 3D integration technologies for MEMS based on copper filled TSV's and copper-to-copper metal thermo compression bonding. 2013 IEEE International Semiconductor Conference Dresden – Grenoble: Technology, Design, Packaging, Simulation and Test, ISCDG 2013.
-
Rebhan, B., Hesser, G., Duchoslav, J. et al. (2012). Low-temperature Cu-Cu wafer bonding.
ECS Trans.
50 (7): 139–149.
10.1149/05007.0139ecst Google Scholar
- Shigetou, A., Itoh, T., and Suga, T. (2005). Direct bonding of CMP-Cu films by surface activated bonding (SAB) method. J. Mater. Sci. 40 (12): 3149–3154.
- Tanaka, K., Hirano, H., Kumano, M. et al. (2018). Bonding-based wafer-level vacuum packaging using atomic hydrogen pre-treated Cu bonding frames. Micromachines 9 (4): 181.
- Tan, C.S., Lim, D.F., Singh, S.G. et al. (2009). Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Appl. Phys. Lett. 95 (19): 192108.
- Chang, J. and Lin, L. (2010). MEMS packaging technologies & applications. Proceedings of 2010 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2010, 126–129.
-
Okamoto, H. and Massalski, T.B. (1983). The Au-Si (gold-silicon) system.
Bull. Alloy Phase Diagrams
4 (2): 190–198.
10.1007/BF02884878 Google Scholar
- Lani, S., Bosseboeuf, A., Belier, B. et al. (2006). Gold metallizations for eutectic bonding of silicon wafers. Microsyst. Technol. 12 (10–11): 1021–1025.
- Wolffenbuttel, R.F. (1997). Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond. Sensors Actuat. A Phys. 62 (1–3): 680–686.
- Lin, Y.C., Baum, M., Haubold, M. et al. (2009). Development and evaluation of AuSi eutectic wafer bonding. TRANSDUCERS 2009 – 15th International Conference on Solid-State Sensors, Actuators and Microsystems, 244–247.
- Gottfried, K., Wiemer, M., Franke, A. et al. (2012). Contact arrangement for establishing A spaced, electrically conducting connection between microstructured components, EP000002331455B1.
- Perez-Quintana, I., Ottaviani, G., Tonini, R. et al. (2005). An aluminum-germanium eutectic structure for silicon wafer bonding technology. Phys. Status Solidi 2 (10): 3706–3709.
- Nasiri, S. and Flannery, A. (2008). Method of fabrication of a Al/Ge bonding in a wafer packaging environment and a product produced therefrom. US7442570B2.
- Goßler, C., Kunzer, M., Baum, M. et al. (2013). Aluminum-germanium wafer bonding of (AlGaIn)N thin-film light-emitting diodes. Microsyst. Technol. 19 (5): 655–659.
- Chidambaram, V., Yeung, H.B., and Shan, G. (2012). Development of CMOS compatible bonding material and process for wafer level mems packaging application under harsh environment. J. Electron. Mater. 41: 136–141.