Enhancing Sustainable Management of Waste Dump Sites with Smart Drones and Geospatial Tech
Air Quality Monitoring and Analysis
Naveen Chandra Gowda
School of Computer Science and Engineering, REVA University, Bengaluru, India
Search for more papers by this authorH. N. Veena
Department of Computer Science and Engineering, SJB Institute of Technology, Bengaluru, India
Search for more papers by this authorAghila Rajagopal
Department of Artificial Intelligence and Data Science, Kamaraj College of Engineering and Technology, Virudhunagar, India
Search for more papers by this authorShrikant Tangade
Department of Mathematics, University of Padova, Padova, Italy
Search for more papers by this authorNaveen Chandra Gowda
School of Computer Science and Engineering, REVA University, Bengaluru, India
Search for more papers by this authorH. N. Veena
Department of Computer Science and Engineering, SJB Institute of Technology, Bengaluru, India
Search for more papers by this authorAghila Rajagopal
Department of Artificial Intelligence and Data Science, Kamaraj College of Engineering and Technology, Virudhunagar, India
Search for more papers by this authorShrikant Tangade
Department of Mathematics, University of Padova, Padova, Italy
Search for more papers by this authorAli Kashif Bashir
Search for more papers by this authorSummary
Air pollution poses a significant global health challenge, demanding access to precise and up-to-date air quality information for effective mitigation of its impact on human well-being. Traditional methods of monitoring air quality have limits in terms of efficiency and spatial coverage. However, monitoring systems for verifying the real-time air quality have emerged as a result of the integration of drone technology, Internet of Things, and Geographic Information System capabilities. These systems are especially useful in areas dealing with environmental challenges and health risks related to unsegregated waste because they provide accurate insights over large regions. In conclusion, GIS technology plays a critical role in the development and implementation of monitoring systems for real-time air quality checking, which are required to gain up-to-date, effective and accurate data that are critical for efficient environmental management and public health protection. Annual global air pollution poses a serious health risk to millions, underscoring the imperative for precise and current air quality information. The integration of IoT, drone, and GIS technologies enables dynamic real-time monitoring, unveiling fluctuations in gas concentrations. This emphasizes the vital significance of continual environmental surveillance, particularly in high-risk zones such as the Kodungaiyur dump yard.
References
- Kulshreshtha , N. , Kumar , S. , Vaishya , R.C. , Assessment of trace metal concentration in the ambient air of the Prayagraj City during Diwali festival—a case study . Environ. Monit. Assess. , 193 , 3 , Springer Science and Business Media LLC , Feb. 27, 2021 , doi: 10.1007/s10661-021-08932-3 .
- Rubino , F.M. , Floridia , L. , Tavazzani , M. , Fustinoni , S. , Giampiccolo , R. , Colombi , A. , Height profile of some air quality markers in the urban atmosphere surrounding a 100m tower building . Atmos. Environ. , 32 , 20 , Elsevier BV , 3569 – 3580 , Sep. 1998 , doi: 10.1016/s1352-2310(98)00074-0 .
- Loxham , M. and Nieuwenhuijsen , M.J. , Health effects of particulate matter air pollution in underground railway systems – a critical review of the evidence . Part. Fibre Toxicol. , 16 , 1 , Springer Science and Business Media LLC , Mar. 6, 2019 , doi: 10.1186/s12989-019-0296-2 .
- World Health Organization , WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide , World Health Organization , 2021 .
-
Yang , S.
,
Yuesi , W.
,
Changchun , Z.
,
Measurement of the vertical profile of atmospheric SO2 during the heating period in Beijing on days of high air pollution
.
Atmos. Environ.
,
43
,
2
,
Elsevier BV
,
468
–
472
, Jan.
2009
, doi:
10.1016/j.atmosenv.2008.09.057
.
10.1016/j.atmosenv.2008.09.057 Google Scholar
- Wang , M. , Huang , T. , Wong , D.C. , Ho , K.F. , Dong , G. , Yim , S.H.L. , A new approach for health-oriented ozone control strategy: Adjoint-based optimization of NOx emission reductions using metaheuristic algorithms . J. Cleaner Prod. , 312 , Elsevier BV , 127533 , Aug. 2021 , doi: 10.1016/j.jclepro.2021.127533 .
- Zhong , L. , et al ., Science–policy interplay: Air quality management in the Pearl River Delta region and Hong Kong . Atmos. Environ. , 76 , Elsevier BV , 3 – 10 , Sep. 2013 , doi: 10.1016/j.atmosenv.2013.03.012 .
- Spinelle , L. , Gerboles , M. , Villani , M.G. , Aleixandre , M. , Bonavitacola , F. , Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2 . Sens. Actuators, B , 238 , Elsevier BV , 706 – 715 , Jan. 2017 , doi: 10.1016/j.snb.2016.07.036 .
- Borrego , C. , et al ., Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise . Atmos. Environ. , 147 , Elsevier BV , 246 – 263 , Dec. 2016 , doi: 10.1016/j.atmosenv.2016.09.050 .
- Castell , N. , et al ., Mobile technologies and services for environmental monitoring: The Citi-Sense-MOB approach . Urban Clim. , 14 , Elsevier BV , 370 – 382 , Dec. 2015 , doi: 10.1016/j.uclim.2014.08.002 .
- Spinelle , L. , Gerboles , M. , Villani , M.G. , Aleixandre , M. , Bonavitacola , F. , Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide . Sens. Actuators, B , 215 , Elsevier BV , 249 – 257 , Aug. 2015 , doi: 10.1016/j.snb.2015.03.031 .
- Mead , M.I. , et al ., The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks . Atmos. Environ. , 70 , Elsevier BV , 186 – 203 , May 2013 , doi: 10.1016/j.atmosenv.2012.11.060 .
-
Quan , S.J.
and
Bansal , P.
,
A systematic review of GIS-based local climate zone mapping studies
.
Build. Environ.
,
196
,
Elsevier BV
,
107791
, Jun.
2021
, doi:
10.1016/j.buildenv.2021.107791
.
10.1016/j.buildenv.2021.107791 Google Scholar
- Järvi , L. , et al ., Determinants of spatial variability of air pollutant concentrations in a street canyon network measured using a mobile laboratory and a drone . Sci. Total Environ. , 856 , Elsevier BV , 158974 , Jan. 2023 , doi: 10.1016/j.scitotenv.2022.158974 .
-
Shalini , L.
,
Manvi , S.S.
,
Gardiner , B.
,
Gowda , N.C.
,
Image Based Classification of COVID-19 Infection Using Ensemble of Machine Learning Classifiers and Deep Learning Techniques
.
2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI)
, Dec. 8,
2022
,
IEEE
, doi:
10.1109/icdsaai55433.2022.10028859
.
10.1109/ICDSAAI55433.2022.10028859 Google Scholar
- Ranganathan , R.H. , Balusamy , S. , Partheeban , P. , Mani , C. , Sridhar , M. , Rajasekaran , V. , Air Quality Monitoring and Analysis for Sustainable Development of Solid Waste Dump Yards Using Smart Drones and Geospatial Technology . Sustainability , 15 , 18 , MDPI AG , 13347 , Sep. 6, 2023 , doi: 10.3390/su151813347 .
-
X
.
et al
.,
Spatio-temporal variations and factors of a provincial PM2.5 pollution in eastern China during 2013–2017 by geostatistics
.
Sci. Rep.
,
9
,
1
,
Springer Science and Business Media LLC
, Mar. 5,
2019
, doi:
10.1038/s41598-019-40426-8
.
10.1038/s41598?019?40426?8 Google Scholar
-
Rekha , K.B.
and
Chandra Gowda , N.
,
A framework for sentiment analysis in customer product reviews using machine learning
.
2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)
, Oct. 9,
2020
,
IEEE
, doi:
10.1109/icstcee49637.2020.9276877
.
10.1109/icstcee49637.2020.9276877 Google Scholar
-
Enigella , S.R.
and
Shahnasser , H.
,
Real Time Air Quality Monitoring
.
2018 10th International Conference on Knowledge and Smart Technology (KST)
, Jan.
2018
,
IEEE
, doi:
10.1109/kst.2018.8426102
.
10.1109/KST.2018.8426102 Google Scholar
-
Munera , D.
,
Tobon V., D.P.
,
Aguirre , J.
,
Gomez , N.G.
,
IoT-based air quality monitoring systems for smart cities: A systematic mapping study
.
Int. J. Electr. Comput. Eng. (IJECE)
,
11
,
4
,
Institute of Advanced Engineering and Science
,
3470
, Aug. 1,
2021
, doi:
10.11591/ijece.v11i4.pp3470-3482
.
10.11591/ijece.v11i4.pp3470-3482 Google Scholar
-
Hognogi , G.-G.
,
Pop , A.-M.
,
Marian-Potra , A.-C.
,
Someșfălean , T.
,
The Role of UAS–GIS in Digital Era Governance. A Systematic Literature Review
.
Sustainability
,
13
,
19
,
MDPI AG
,
11097
, Oct. 8,
2021
, doi: 10.3390/su131911097.
10.3390/su131911097 Google Scholar
-
Shalini , L.
,
Manvi , S.S.
,
Gowda , N.C.
,
Manasa , K.N.
,
Detection of Phishing Emails using Machine Learning and Deep Learning
.
2022 7th International Conference on Communication and Electronics Systems (ICCES)
, Jun. 22,
2022
,
IEEE
, doi:
10.1109/icces54183.2022.9835846
.
10.1109/ICCES54183.2022.9835846 Google Scholar
-
Basheer , S.
,
Rashid , H.
,
Nasir , A.
,
Nawaz , R.A.
,
Spatial and Temporal Variability Analysis of PM2.5 Concentration in Lahore City
.
Environ. Contam. Rev.
,
2
,
1
,
ZIbeline International Publishing
,
6
–
10
, Oct. 10, 2019, doi: 10.26480/ecr.01.2019.06.10.
10.26480/ecr.01.2019.06.10 Google Scholar
- Popoola , O.A.M. , et al ., Use of networks of low cost air quality sensors to quantify air quality in urban settings . Atmos. Environ. , 194 , Elsevier BV , 58 – 70 , Dec. 2018 , doi: 10.1016/j.atmosenv.2018.09.030 .
-
Jumaah , H.J.
,
Ameen , M.H.
,
Kalantar , B.
,
Rizeei , H.M.
,
Jumaah , S.J.
,
Air quality index prediction using IDW geostatistical technique and OLS-based GIS technique in Kuala Lumpur, Malaysia
.
Geomatics Nat. Hazards Risk
,
10
,
1
,
Informa UK Limited
,
2185
–
2199
, Jan. 1,
2019
, doi:
10.1080/19475705.2019.1683084
.
10.1080/19475705.2019.1683084 Google Scholar
-
Gowda , N.C.
and
B.M.A
.,
A Trust Prediction Mechanism in Edge Communications using Optimized Support Vector Regression
.
2023 7th International Conference on Computing Methodologies and Communication (ICCMC)
, Feb. 23,
2023
,
IEEE
, doi:
10.1109/iccmc56507.2023.10083686
.
10.1109/ICCMC56507.2023.10083686 Google Scholar
-
Madokoro , H.
,
et al
.,
Development of Drone-Mounted Multiple Sensing System with Advanced Mobility for In Situ Atmospheric Measurement: A Case Study Focusing on PM2.5 Local Distribution
.
Sensors
,
21
,
14
,
MDPI AG
, 4881, Jul. 17,
2021
, doi: 10.3390/s21144881.
10.3390/s21144881 Google Scholar
-
Gowda , N.C.
and
Manvi , S.S.
,
An Efficient Authentication Scheme for Fog Computing Environment using Symmetric Cryptographic methods
.
2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)
, Sep. 30,
2021
,
IEEE
, doi:
10.1109/r10-htc53172.2021.9641591
.
10.1109/R10-HTC53172.2021.9641591 Google Scholar
- Wang , S. , et al ., Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: impacts of COVID-19 pandemic lockdown . Atmos. Chem. Phys. , 21 , 9 , Copernicus GmbH , 7199 – 7215 , May 11, 2021 , doi: 10.5194/acp-21-7199-2021 .
-
Cynthia , J.
,
Saroja , M.N.
,
Sultana , P.
,
Senthil , J.
,
IoT-Based Real Time Air Pollution Monitoring System
.
Int. J. Grid High Perform. Comput.
,
11
,
4
,
IGI Global
,
28
–
41
, Oct. 01,
2019
, doi:
10.4018/ijghpc.2019100103
.
10.4018/IJGHPC.2019100103 Google Scholar
- González Serrano , V. , Lin , E.Z. , Godri Pollitt , K.J. , Licina , D. , Adequacy of stationary measurements as proxies for residential personal exposure to gaseous and particle air pollutants . Environ. Res. , 231 , Elsevier BV , 116197 , Aug. 2023 , doi: 10.1016/j.envres.2023.116197 .
-
Gupta , S.
,
Pebesma , E.
,
Degbelo , A.
,
Costa , A.
,
Optimising Citizen-Driven Air Quality Monitoring Networks for Cities
.
ISPRS Int. J. Geo-Inf.
,
7
,
12
,
MDPI AG
,
468
, Nov. 30,
2018
, doi:
10.3390/ijgi7120468
.
10.3390/ijgi7120468 Google Scholar
-
Liu , J.
,
Weng , F.
,
Li , Z.
,
Cribb , M.C.
,
Hourly PM2.5 Estimates from a Geostationary Satellite Based on an Ensemble Learning Algorithm and Their Spatiotemporal Patterns over Central East China
.
Remote Sens.
,
11
,
18
,
MDPI AG
,
2120
, Sep. 12,
2019
, doi: 10.3390/rs11182120.
10.3390/rs11182120 Google Scholar
-
Hinojosa-Baliño
,
Infante-Vázquez , O.
,
Vallejo , M.
,
Distribution of PM2.5 Air Pollution in Mexico City: Spatial Analysis with Land-Use Regression Model
.
Appl. Sci.
,
9
,
14
,
MDPI AG
,
2936
, Jul. 23,
2019
, doi: 10.3390/app9142936.
10.3390/app9142936 Google Scholar
- Pusfitasari , E.D. , Ruiz-Jimenez , J. , Heiskanen , I. , Jussila , M. , Hartonen , K. , Riekkola , M.-L. , Aerial drone furnished with miniaturized versatile air sampling systems for selective collection of nitrogen containing compounds in boreal forest . Sci. Total Environ. , 808 , Elsevier BV , 152011 , Feb. 2022 , doi: 10.1016/j.scitotenv.2021.152011 .
-
Wyard , C.
,
Beaumont , B.
,
Grippa , T.
,
Hallot , E.
,
UAV-Based Landfill Land Cover Mapping: Optimizing Data Acquisition and Open-Source Processing Protocols
.
Drones
,
6
,
5
,
MDPI AG
,
123
, May 9,
2022
, doi:
10.3390/drones6050123
.
10.3390/drones6050123 Google Scholar
- Scheller , J.H. , Mastepanov , M. , Christensen , T.R. , Toward UAV-based methane emission mapping of Arctic terrestrial ecosystems . Sci. Total Environ. , 819 , Elsevier BV , 153161 , May 2022 , doi: 10.1016/j.scitotenv.2022.153161 .