Synthesis and Characterizations of Nanomaterials for Electronic Devices
G. Sahaya Dennish Babu
Department of Physics, Chettinad College of Engineering and Technology, Karur, Tamil Nadu, India
Search for more papers by this authorG. Helen Ruth Joice
Department of Physics, Thiru Kolanjiappar Government Arts College, Virudhachalam, Tamil Nadu, India
Search for more papers by this authorN. Sandhya Rani
Department of Physics, Vidyavardhaka College of Engineering, Mysuru, Karnataka, India
Search for more papers by this authorM. Malarvizhi
Department of Physics, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, Tamil Nadu, India
Search for more papers by this authorG. Sahaya Dennish Babu
Department of Physics, Chettinad College of Engineering and Technology, Karur, Tamil Nadu, India
Search for more papers by this authorG. Helen Ruth Joice
Department of Physics, Thiru Kolanjiappar Government Arts College, Virudhachalam, Tamil Nadu, India
Search for more papers by this authorN. Sandhya Rani
Department of Physics, Vidyavardhaka College of Engineering, Mysuru, Karnataka, India
Search for more papers by this authorM. Malarvizhi
Department of Physics, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, Tamil Nadu, India
Search for more papers by this authorGopal Rawat
Chief Technology Officer
Bharatah Cryogenics Pvt. Ltd., Uttar Pradesh, India
Search for more papers by this authorGautam Patel
Dept. of Chemistry, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorKalim Deshmukh
New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic
Search for more papers by this authorChaudhery Mustansar Hussain
Dept. of Chemistry & Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States
Search for more papers by this authorSummary
Due to their exceptional qualities and the fact that they include a diverse range of particles with a least one dimension ranging from 1 nm to 100 nm, nanomaterials have drawn a lot of interest as a remarkable class of materials. Extremely high surface areas may be achieved by the purposeful creation of nanoparticles. Nanomaterials have become a crucial topic of study in the realm of affordable electrochemical devices for energy storage and conversion applications. Numerous studies have been conducted in an effort to increase the efficiency and efficacy of electrochemical devices, such as batteries, supercapacitors, and fuel cells, as a result of their extraordinary physical and chemical features. The desire for increased productivity, connection, and sustainability at a lower cost is what propels the ongoing research and improvement of these high-performance materials. The use of nanotechnology in cutting-edge electronic gadgets is covered. The chapter places a strong emphasis on the various synthesis techniques for new nanomaterials that have uses in electrical gadgets. Additionally, it examines the difficulties faced by companies based on nanotechnology as well as the integration of nanostructures with electrical systems in current and upcoming economically relevant applications. The chapter also examines the relationship between nanomaterials and electronics, which is crucial to the development of future household appliances. Overall, this chapter gives a thorough review of the role that nanomaterials play in the creation of affordable electrical devices. It serves as a helpful resource for academics and engineers interested in the most recent developments in nanomaterials for contemporary electrical devices and emphasizes the necessity for more study in this quickly expanding subject.
References
- Pokropivny , V. , Lohmus , R. , Hussainova , I. , Pokropivny , A. , Vlassov , S. , Introduction to nanomaterials and nanotechnology , Tartu University Press , Ukraine , 2007 .
- C. Bréchignac , P. Houdy , M. Lahmani (Eds.), Nanomaterials and nanochemistry , Springer Science & Business Media , Berlin, Germany , 2008 .
- AbdelHamid , A.A. , Mendoza-Garcia , A. , Ying , J.Y. , Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries . Nano Energy , 93 , 106860 , 2022 .
- Murty , B.S. ,., Shankar , P. , Baldev , R. , Rath , B.B. , Murday , J. , Murty , B.S. , Shankar , P. , Baldev , R. , Rath , B.B. , Murday , J. , Unique properties of nanomaterials . Textbook Nanoscience Nanotechnology , 1 , 29 – 65 , 2013 .
- Adekoya , J.A. , Ogunniran , K.O. , Siyanbola , T.O. , Dare , E.O. , Revaprasadu , N. , Band structure, morphology, functionality, and size-dependent properties of metal nanoparticles . Noble Precious Metals-Properties Nanoscale Eff. Appl. , 1 , 15 – 42 , 2018 .
- Rao , C.N.R. , Kulkarni , G.U. , John Thomas , P. , Edwards , P.P. , Size-dependent chemistry: properties of nanocrystals . Chemistry–A Eur. J. , 8 , 1 , 28 - 35 , 2002 .
- Zhang , Z. , Ouyang , Y. , Cheng , Y. , Chen , J. , Li , N. , Zhang , G. , Size-dependent phononic thermal transport in low-dimensional nanomaterials . Phys. Rep. , 860 , 1 – 26 , 2020 .
- Shaji , A. and Zachariah , A.K. , Surface area analysis of nanomaterials , in: Thermal and Rheological Measurement Techniques for Nanomaterials Characterization , pp. 197 – 231 , Elsevier , The Netherlands , 2017 .
- Gopakumar , D.A. , Pai , A.R. , Pasquini , D. , Shao-Yuan Ben , L. , Khalil HPS , A. , Thomas , S. , Nanomaterials—state of art, new challenges, and opportunities . Nanoscale Mater. Water Purif. , 1 , 1 – 24 , 2019 .
- Jagiello , K. , Chomicz , B. , Avramopoulos , A. , Gajewicz , A. , Mikolajczyk , A. , Bonifassi , P. , Papadopoulos , M.G. , Leszczynski , J. , Puzyn , T. , Size-dependent electronic properties of nanomaterials: How this novel class of nanodescriptors supposed to be calculated? Struct. Chem. , 28 , 635 – 643 , 2017 .
- Dubois , S.M.-M. , Zanolli , Z. , Declerck , X. , Charlier , J.-C. , Electronic properties and quantum transport in Graphene-based nanostructures . Eur. Phys. J. B , 72 , 1 – 24 , 2009 .
- Deng , S. and Berry , V. , Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications . Mater. Today , 19 , 4 , 197 – 212 , 2016 .
- Lue , J.T. , Physical properties of nanomaterials . Encycl. Nanoscience Nanotechnology , 10 , 1 , 1 – 46 , 2007 .
- Ghatak , E.K.P. and Mitra , M. , Nanomaterials: Volume 1: Electronic Properties , Walter de Gruyter GmbH & Co KG , Berlin, Germany , 2018 .
- Puzder , A. , Williamson , A.J. , Reboredo , F.A. , Galli , G. , Structural stability and optical properties of nanomaterials with reconstructed surfaces . Phys. Rev. Lett. , 91 , 15 , 157405 , 2003 .
- Zhang , J.Z. , Optical properties and spectroscopy of nanomaterials , World Scientific , New Jersey, USA , 2009 .
- Li , J. and Zhang , J.Z. , Optical properties and applications of hybrid semiconductor nanomaterials . Coord. Chem. Rev. , 253 , 23-24 , 3015 – 3041 , 2009 .
- Bokov , D. , Turki Jalil , A. , Chupradit , S. , Suksatan , W. , Ansari , M.J. , Shewael , I.H. , Valiev , G.H. , Kianfar , E. , Nanomaterial by sol-gel method: synthesis and application . Adv. Mater. Sci. Eng. , 2021 , 1 – 21 , 2021 .
- S , T. and Rao , A.M. , Thermal properties of nanomaterials and nanocomposites , in: Thermal Conductivity: Theory, Properties, and Applications , pp. 261 – 284 , Springer US , Boston, MA , 2004 .
- Qiu , L. , Zhu , N. , Feng , Y. , Michaelides , Żyła , E.E.G. , Dengwei , J. , Xinxin , Z. , Norris , P.M. , Markides , C.N. , Mahian , O. , A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids . Phys. Rep. , 843 , 1 – 81 , 2020 .
- Andrievski , R.A. , Review of thermal stability of nanomaterials . J. Mater. Sci. , 49 , 1449 – 1460 , 2014 .
- Kumar , C.SSR ., Magnetic nanomaterials , John Wiley & Sons , USA , 2009 .
- Dhivya , R. , Karthikeyan , N. , Kulandai Tererse , S. , Thenmozhi , R. , Judith Jayarani , A. , Swetha , M. , Caballero-Briones , F. , Sahaya Dennish Babu , G. , Magnetic Nanomaterials for Solar Energy Conversion Applications . Nanostruct. Magn. Materials Functionalization Diverse Appl. , 1 , 211 , 2023 .
- Pereira , C. , Pereira , A.M. , Fernandes , C. , Rocha , M. , Mendes , R. , Paz Fernández-García , M. , Guedes , A. , et al ., Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route . Chem. Mater. , 24 , 8 , 1496 – 1504 , 2012 .
- Kwon , J. , Choi , W.J. , Jeong , U. , Jung , W. , Hwang , I. , Park , K.H. , Ko , S.G. , Park , S.M. , Kotov , N.A. , Yeom , J. , Recent advances in chiral nanomaterials with unique electric and magnetic properties . Nano Convergence , 9 , 1 , 1 – 29 , 2022 .
- Petcharoen , K. and Sirivat , A.J.M.S. , Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method . Mater. Sci. Eng. B , 177 , 5 , 421 – 427 , 2012 .
- Anbarasu , M. , Anandan , M. , Chinnasamy , E. , Gopinath , V. , Balamurugan , K. , Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications . Spectrochim. Acta, Part A , 135 , 536 – 539 , 2015 .
- Hsu , W.-C. , Chen , S.C. , Kuo , P.C. , Lie , C.T. , Tsai , W.S. , Preparation of NiCuZn ferrite nanoparticles from chemical co-precipitation method and the magnetic properties after sintering . Mater. Sci. Eng. B , 111 , 2-3 , 142 - 149 , 2004 .
- Hu , S.L. , Junliang , L. , Yu , H.Y. , Liu , Z.W. , Synthesis and properties of barium ferrite nanopowders by chemical co-precipitation method . J. Magn. Magn. Mater. , 473 , 79 – 84 , 2019 .
- Eryong , N. , Donglai , L. , Yunsen , Z. , Xue , B. , Liang , Y. , Yong , J. , Zhifeng , J. , Xiaosong , S. , Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation . Appl. Surf. Sci. , 257 , 21 , 8762 – 8766 , 2011 .
- Feng , S.-H. and Li , G.-H. , Hydrothermal and solvothermal syntheses , in: Modern inorganic synthetic chemistry , pp. 73 – 104 , Elsevier , The Netherlands , 2017 .
- Ndlwana , L. , Raleie , N. , Dimpe , K.M. , Ogutu , H.F. , Oseghe , E.O. , Motsa , M.M. , Msagati , T.AM. , Mamba , B.B. , Sustainable hydrothermal and solvothermal synthesis of advanced carbon materials in multidimensional applications: A review . Materials , 14 , 17 , 5094 , 2021 .
- Jensen , K.MO ., Tyrsted , C. , Bremholm , M. , Iversen , B.B. , In situ studies of solvothermal synthesis of energy materials . ChemSusChem , 7 , 6 , 1594 – 1611 , 2014 .
- Swihart , M.T. , Vapor-phase synthesis of nanoparticles . Curr. Opin. Colloid Interface Sci. , 8 , 1 , 127 - 133 , 2003 .
- Singhal , A. , Skandan , G. , Wang , A. , Glumac , N. , Kear , B.H. , Hunt , R.D. , On nanoparticle aggregation during vapor phase synthesis . Nanostruct. Mater. , 11 , 4 , 545 – 552 , 1999 .
- Qiu , Y. and Yang , S. , ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing . Adv. Funct. Mater. , 17 , 8 , 1345 – 1352 , 2007 .
- Haider , A.J. , Haider , M.J. , Mehde , M.S. , A review on preparation of silver nano-particles , in: AIP Conference Proceedings , vol. 1968 , AIP Publishing , 2018 .
- Kim , M. , Osone , S. , Kim , T. , Higashi , H. , Seto , T. , Synthesis of nanoparticles by laser ablation: A review . Kona Powder Part. J. , 34 , 80 – 90 , 2017 .
- Semaltianos , N.G. , Nanoparticles by laser ablation . Crit. Rev. Solid State Mater. Sci. , 35 , 2 , 105 – 124 , 2010 .
- Zeng , H. , Du , X.-W. , Singh , S.C. , Kulinich , S.A. , Yang , S. , He , J. , Cai , W. , Nanomaterials via laser ablation/irradiation in liquid: a review . Adv. Funct. Mater. , 22 , 7 , 1333 – 1353 , 2012 .
- Van Embden , J. , Chesman , A.SR. , Jasieniak , J.J. , The heat-up synthesis of colloidal nanocrystals . Chem. Mater. , 27 , 7 , 2246 – 2285 , 2015 .
- Kwon , S.G. and Hyeon , T. , Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides . Acc. Chem. Res. , 41 , 12 , 1696 – 1709 , 2008 .
- Baghbanzadeh , M. , Carbone , L. , Davide Cozzoli , P. , Oliver Kappe , C. , Microwave-assisted synthesis of colloidal inorganic nanocrystals . Angew. Chem. Int. Ed. , 50 , 48 , 11312 – 11359 , 2011 .
- Zhang , J. , Li , Y. , Zhang , X. , Yang , B. , Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays . Adv. Mater. , 22 , 38 , 4249 – 4269 , 2010 .
- Lu , Z. and Yin , Y. , Colloidal nanoparticle clusters: functional materials by design . Chem. Soc. Rev. , 41 , 21 , 6874 – 6887 , 2012 .
- Jariwala , D. , Sangwan , V.K. , Lauhon , L.J. , Marks , T.J. , Hersam , M.C. , Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing . Chem. Soc. Rev. , 42 , 7 , 2824 – 2860 , 2013 .
- Kamyshny , A. and Magdassi , S. , Conductive nanomaterials for printed electronics . Small , 10 , 17 , 3515 - 3535 , 2014 .
- Dahiya , A.S. , Shakthivel , D. , Kumaresan , Y. , Zumeit , A. , Christou , A. , Dahiya , R. , High-performance printed electronics based on inorganic semiconducting nano to chip scale structures . Nano Convergence , 7 , 1 – 25 , 2020 .
- Huang , Q. and Zhu , Y. , Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications . Adv. Mater. Technol. , 4 , 5 , 1800546 , 2019 .
- Cui , Z. , Printed electronics: materials, technologies and applications , John Wiley & Sons , USA , 2016 .
- Franklin , A.D. , Nanomaterials in transistors: From high-performance to thin-film applications . Science , 349 , 6249 , aab2750 , 2015 .
- Nasr , J.R. , Schulman , D.S. , Sebastian , A. , Horn , M.W. , Das , S. , Mobility deception in nanoscale transistors: an untold contact story . Adv. Mater. , 31 , 2 , 1806020 , 2019 .
- Zhang , Q. , Liu , C. , Zhou , P. , 2D materials readiness for the transistor performance breakthrough . Iscience , 26 , 5 , 2023 .
- Knobloch , T. , Selberherr , S. , Grasser , T. , Challenges for nanoscale CMOS logic based on two-dimensional materials . Nanomaterials , 12 , 20 , 3548 , 2022 .
- Phillips , J.D. , Energy harvesting in nanosystems: Powering the next generation of the internet of things . Front. Nanotechnol. , 3 , 633931 , 2021 .
- Kannan , K. , Sadasivuni , K.K. , Abdullah , A.M. , Kumar , B. , Current trends in MXene-based nanomaterials for energy storage and conversion system: a mini review . Catalysts , 10 , 5 , 495 , 2020 .
- Xiong , S. , Lin , M. , Wang , L. , Liu , S. , Weng , S. , Jiang , S. , Xu , Y. , Jiao , Y. , Chen , J. , Defects-type three-dimensional Co3O4 nanomaterials for energy conversion and low temperature energy storage . Appl. Surf. Sci. , 546 , 149064 , 2021 .
- Zhao , S. , Wang , H. , Ruediger , A. , Gu , F. , Yan , D. , Lu , J. , Micro/nano materials for energy storage and conversion . Front. Chem. , 11 , 1150885 , 2023 .
- Zhang , B. , Li , Y. , Bai , H. , Jia , B. , Liu , D. , Li , L. , Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion . Nano Res. , 16 , 1 – 20 , 2023 .
- Ong , W.-J. , Zheng , N. , Antonietti , M. , Advanced nanomaterials for energy conversion and storage: current status and future opportunities . Nanoscale , 13 , 22 , 9904 – 9907 , 2021 .
- Chakraborty , S.K. , Kundu , B. , Nayak , B. , Dash , S.P. , Sahoo , P.K. , Challenges and opportunities in 2D heterostructures for electronic and optoelectronic devices . Iscience , 25 , 3 , 103942 , 2022 .
- Kumar , N. , Zoladek-Lemanczyk , A. , Guilbert , A.AY. , Su , W. , Tuladhar , S.M. , Kirchartz , T. , Schroeder , B.C. , et al ., Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale . Nanoscale , 9 , 8 , 2723 – 2731 , 2017 .
- Yang , G. , Zhang , Y.-M. , Cai , Y. , Yang , B. , Gu , C. , Xiao-An Zhang , S. , Advances in nanomaterials for electrochromic devices . Chem. Soc. Rev. , 49 , 23 , 8687 – 8720 , 2020 .
- G.-C. Yi (Ed.), Semiconductor nanostructures for optoelectronic devices: Processing, characterization and applications , Springer Science & Business Media , Berlin, Germany , 2012 .
- Lee , M. , Seung , H. , Ik Kwon , J. , Kee Choi , M. , Kim , D.-H. , Choi , C. , Nanomaterial-Based Synaptic Optoelectronic Devices for In-Sensor Preprocessing of Image Data . ACS Omega , 8 , 6 , 5209 – 5224 , 2023 .
- Bhushan , B. , Frontiers in nanotribology: Magnetic storage, bio/nanotechnology, cosmetics, and bioinspiration . J. Colloid Interface Sci. , 577 , 127 – 162 , 2020 .
- Jun , Y.-. , Seo , J.-. , Cheon , J. , Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences . Acc. Chem. Res. , 41 , 2 , 179 – 189 , 2008 .
- Braganca , P.M. , Gurney , B.A. , Wilson , B.A. , Katine , J.A. , Maat , S. , Childress , J.R. , Nanoscale magnetic field detection using a spin torque oscillator . Nanotechnology , 21 , 23 , 235202 , 2010 .
- Bandodkar , A.J. , Jeerapan , I. , Wang , J. , Wearable chemical sensors: Present challenges and future prospects . ACS Sens. , 1 , 5 , 464 – 482 , 2016 .
- Yang , Y. and Jiao , P. , Nanomaterials and nanotechnology for biomedical soft robots . Mater. Today Adv. , 17 , 100338 , 2023 .