4D Printing Applications in Photonics
Bijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShubhanshi Sharma
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorMonica Pradhan
School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, India
Search for more papers by this authorShailendra K. Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShubhanshi Sharma
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorMonica Pradhan
School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, India
Search for more papers by this authorShailendra K. Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Dept. of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorSummary
This chapter reviews the progress and possible applications of 4D printing in the field of photonics, highlighting its ability to produce adaptable components for advanced optical characteristics. The combination of shape memory materials with 3D printing technology allows for the development of tunable photonic devices that respond to changes in the environment, leading to groundbreaking applications. This review presents and discusses various smart mate- rials and their applications in the field of photonics. Different additive manufacturing processes utilized for photonics applications have also been reviewed. The main areas of interest are re- configurable devices with dynamically changing colors, infrared (IR) detectors, soft robotics, biomedical devices, and adaptive optical components. By harnessing the distinctive features of 4D printed materials, it is possible to create advanced photonic devices for dynamic displays, anti-counterfeiting measures, fano resonant structures, smart optical fibers, sensors and other applications. The chapter also emphasizes the need for future research to enhance the performance and properties that can expand the actual applications of these advanced materials and structures.
References
-
Yeh , C.
,
Applied photonics
,
Academic Press
,
San Diego, California, USA
,
1994
.
10.1016/B978-0-08-049926-0.50006-X Google Scholar
- Saleh , B.E. and Teich , M.C. , Fundamentals of photonics , John Wiley & Sons , New York, USA , 2019 .
- Winzer , P.J. , Neilson , D.T. , Chraplyvy , A.R. , Fiber-optic transmission and networking: the previous 20 and the next 20 years . Opt. Express , 26 , 18 , 24190 – 24239 , 2018 .
- Chuang , S.L. , Physics of photonic devices , John Wiley & Sons , Weinheim, Germany , 2012 .
-
Gibson , I.
,
Rosen , D.W.
,
Stucker , B.
,
et al
.,
Additive manufacturing technologies
, p.
17
,
Springer
,
Singapore
,
2021
.
10.1007/978-3-030-56127-7 Google Scholar
-
Balashanmugam , N.
,
Perspectives on additive manufacturing in Industry 4.0
, pp.
127
–
150
,
Elsevier
,
Amsterdam, Netherlands
,
2021
.
10.1016/B978-0-12-822056-6.00001-1 Google Scholar
- Gao , H. , An , J. , Chua , C.K. , Bourell , D. , Kuo , C.N. , Tan , D.T. , 3D printed optics and photonics: processes, materials and applications . Mater. Today , 69 , 107 – 132 , 2023 .
-
Baev , A.
,
Prasad , P.N.
,
Ågren , H.
,
Samóc , M.
,
Wegener , M.
,
Metaphotonics: An emerging field with opportunities and challenges
.
Phys. Rep.
,
594
,
1
–
60
,
2015
.
10.1016/j.physrep.2015.07.002 Google Scholar
- Camposeo , A. , Persano , L. , Farsari , M. , Pisignano , D. , Additive manufacturing: applications and directions in photonics and optoelectronics . Adv. Opt. Mater. , 7 , 1 , 1800419 , 2019 .
- Tibbits , S. , The emergence of “4D printing” , TED Conferences, LLC (Technology, Entertainment, Design) , New York, USA , 2013 .
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , 4D printing of shape memory polymers: a comparative study of programming methodologies on various material properties . Smart Mater. Struct. , 32 , 7 , 074003 , 2023 .
-
Jeong , H.Y.
,
Lee , E.
,
An , S.C.
,
Lim , Y.
,
Jun , Y.C.
,
3D and 4D printing for optics and metaphotonics
.
Nanophotonics
,
9
,
5
,
1139
–
1160
,
2020
.
10.1515/nanoph-2019-0483 Google Scholar
-
Vainsencher , A.
,
Satzinger , K.
,
Peairs , G.
,
Cleland , A.
,
Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device
.
Appl. Phys. Lett.
,
109
,
3
,
33107
,
2016
.
10.1063/1.4955408 Google Scholar
- Mirhosseini , M. , Sipahigil , A. , Kalaee , M. , Painter , O. , Superconducting qubit to optical photon transduction . Nature , 588 , 7839 , 599 – 603 , 2020 .
- Liu , J. , Tian , H. , Lucas , E. , et al ., Monolithic piezoelectric control of soliton microcombs . Nature , 583 , 7816 , 385 – 390 , 2020 .
- Cheng , J. , Zhang , L. , Zhao , K. , et al ., Flexible multifunctional photonic crystal fibers with shape memory capability for optical waveguides and electrical sensors . Ind. Eng. Chem. Res. , 60 , 23 , 8442 – 8450 , 2021 .
- Liu , X. , Bruch , A.W. , Tang , H.X. , Aluminum nitride photonic integrated circuits: from piezo- optomechanics to nonlinear optics . Adv. Opt. Photonics , 15 , 1 , 236 – 317 , 2023 .
-
Fan , L.
,
Sun , X.
,
Xiong , C.
,
Schuck , C.
,
Tang , H.X.
,
Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors
.
Appl. Phys. Lett.
,
102
,
15
,
153507
,
2013
.
10.1063/1.4802250 Google Scholar
- Bochmann , J. , Vainsencher , A. , Awschalom , D.D. , Cleland , A.N. , Nanomechanical coupling between microwave and optical photons . Nat. Phys. , 9 , 11 , 712 – 716 , 2013 .
- Wang , Y. , Li , M. , Chang , J.K. , et al ., Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures . Nat. Commun. , 12 , 1 , 1651 , 2021 .
-
Li , H.
,
Li , C.
,
Sun , W.
,
et al
.,
Single-Stimulus-Induced Modulation of Multiple Optical Properties
.
Adv. Mater.
,
31
,
23
,
1900388
,
2019
.
10.1002/adma.201900388 Google Scholar
- Wei , H. , Han , L. , Yin , R. , et al ., Micro-3D printed Concanavalin A hydrogel based photonic devices for high-sensitivity glucose sensing . Sens. Actuators, B , 386 , 133707 , 2023 .
-
Ge , J.
,
Hu , Y.
,
Yin , Y.
,
Highly tunable superparamagnetic colloidal photonic crystals
.
Angew. Chem.
,
119
,
39
,
7572
–
7575
,
2007
.
10.1002/ange.200701992 Google Scholar
- Nocentini , S. , Martella , D. , Parmeggiani , C. , Zanotto , S. , Wiersma , D.S. , Structured optical materials controlled by light . Adv. Opt. Mater. , 6 , 15 , 1800167 , 2018 .
- Hippler , M. , Blasco , E. , Qu , J. , et al ., Controlling the shape of 3D microstructures by temperature and light . Nat. Commun. , 10 , 1 , 232 , 2019 .
- Zhou , Y. , Layani , M. , Wang , S. , et al ., Fully printed flexible smart hybrid hydrogels . Adv. Funct. Mater. , 28 , 9 , 1705365 , 2018 .
- Zhuo , X. , Shen , H. , Bian , Y. , Xu , A. , Zhu , R. , Projection-suspended stereolithography 3D printing for low-loss optical hydrogel fiber fabrication . APL Photonics , 6 , 12 , 121302 , 2021 .
- Zhao , P. , Chen , H. , Li , B. , Tian , H. , Lai , D. , Gao , Y. , Stretchable electrochromic devices enabled via shape memory alloy composites (SMAC) for dynamic camouflage . Opt. Mater. , 94 , 378 – 386 , 2019 .
- Strutynski , C. , Evrard , M. , Désévédavy , F. , et al ., 4D Optical fibers based on shape-memory polymers . Nat. Commun. , 14 , 1 , 6561 , 2023 .
- Sun , J. and Hu , F. , Three-dimensional printing technologies for terahertz applications: a review . Int. J. RF Microwave Comput. Aided Eng. , 30 , 1 , e21983 , 2020 .
-
Squires , A.
,
Constable , E.
,
Lewis , R.
,
3D printed terahertz diffraction gratings and lenses
.
J. Infrared, Millimeter, Terahertz Waves
,
36
,
72
–
80
,
2015
.
10.1007/s10762-014-0122-8 Google Scholar
-
Hernandez-Serrano , A.
and
Castro-Camus , E.
,
Quasi-Wollaston-prism for terahertz frequencies fabri- cated by 3D printing
.
J. Infrared, Millimeter, Terahertz Waves
,
38
,
567
–
573
,
2017
.
10.1007/s10762-016-0350-1 Google Scholar
- Canning , J. , Hossain , M.A. , Han , C. , Chartier , L. , Cook , K. , Athanaze , T. , Drawing optical fibers from three-dimensional printers . Opt. Lett. , 41 , 23 , 5551 – 5554 , 2016 .
- Cook , K. , Canning , J. , Leon-Saval , S. , et al ., Air-structured optical fiber drawn from a 3D-printed preform . Opt. Lett. , 40 , 17 , 3966 – 3969 , 2015 .
- Zhao , Q. , Tian , F. , Yang , X. , et al ., Optical fibers with special shaped cores drawn from 3D printed preforms . Optik , 133 , 60 – 65 , 2017 .
- Parker , S.T. , Domachuk , P. , Amsden , J. , et al ., Biocompatible silk printed optical waveguides . Adv. Mater. , 21 , 23 , 2411 – 2415 , 2009 .
- Kuang , X. , Chen , K. , Dunn , C.K. , Wu , J. , Li , V.C. , Qi , H.J. , 3D printing of highly stretchable, shape- memory, and self-healing elastomer toward novel 4D printing . ACS Appl. Mater. Interfaces , 10 , 8 , 7381 – 7388 , 2018 .
- Kotz , F. , Arnold , K. , Bauer , W. , et al ., Three-dimensional printing of transparent fused silica glass . Nat. , 544 , 7650 , 337 – 339 , 2017 .
- Sadeqi , A. , Rezaei Nejad , H. , Owyeung , R.E. , Sonkusale , S. , Three dimensional printing of meta- material embedded geometrical optics (MEGO) . Microsyst. Nanoeng. , 5 , 1 , 16 , 2019 .
- Berglund , G.D. and Tkaczyk , T.S. , Fabrication of optical components using a consumer-grade lithographic printer . Opt. Express , 27 , 21 , 30405 – 30420 , 2019 .
-
Jeong , H.Y.
,
Lee , E.
,
Ha , S.
,
Kim , N.
,
Jun , Y.C.
,
Multistable thermal actuators via multimaterial 4D printing
.
Adv. Mater. Technol.
,
4
,
3
,
1800495
,
2019
.
10.1002/admt.201800495 Google Scholar
- Samal , B.B. , Jena , A. , Mishra , D. , Controlled shape changing components by using 4D printing technology , pp. 78 – 81 , 10th International Conference on Precision, Meso, Micro and Nano Engineering , IIT Madras , 2017 .
- Yang , J. , Zhao , J. , Gong , C. , et al ., 3D printed low-loss THz waveguide based on Kagome photonic crystal structure . Opt. Express , 24 , 20 , 22454 – 22460 , 2016 .
- Liu , S. , Zhao , H. , Lyu , Y. , et al ., Grayscale stereolithography 3D printing of shape memory polymers for dual information encryption based on reconfigurable geometry and tunable optics . Chem. Eng. J. , 487 , 150552 , 2024 .
-
Vallejo-Melgarejo , L.D.
,
Reifenberger , R.G.
,
Newell , B.A.
,
Narváez-Tovar
,
Garcia-Bravo , J.M.
,
Characterization of 3D-printed lenses and diffraction gratings made by DLP additive manufacturing
.
Rapid Prototyping J.
,
25
,
10
,
1684
–
1694
,
2019
.
10.1108/RPJ-03-2019-0074 Google Scholar
- Yuan , C. , Kowsari , K. , Panjwani , S. , et al ., Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing . ACS Appl. Mater. Interfaces , 11 , 43 , 40662 – 40668 , 2019 .
- Zhang , Y. , Huang , L. , Song , H. , et al ., 4D printing of a digital shape memory polymer with tunable high performance . ACS Appl. Mater. Interfaces , 11 , 35 , 32408 – 32413 , 2019 .
- Korrayi , R.R. , Jena , A. , Marupalli , B.C. , Samal , B.B. , Varshney , S.K. , Kumar , C.S. , Four-Dimensional (4D) Microprinting: Materials, Processes, Challenges and Applications , in: Additive Manufacturing with Novel Materials: Processes, Properties and Applications , vol. 2024 , pp. 429 – 457 , River Street, Hoboken, USA & Beverly, MA, USA .
- Hsu , L.Y. , Mainik , P. , Münchinger , A. , et al ., A Facile Approach for 4D Microprinting of MultiPhotoresponsive Actuators . Adv. Mater. Technol. , 8 , 1 , 2200801 , 2023 .
- Jin , D. , Chen , Q. , Huang , T.Y. , Huang , J. , Zhang , L. , Duan , H. , Four-dimensional direct laser writing of reconfigurable compound micromachines . Mater. Today , 32 , 19 – 25 , 2020 .
-
Heinrich , A.
,
Rank , M.
,
Maillard , P.
,
et al
.,
Additive manufacturing of optical components
.
Adv. Opt. Technol.
,
5
,
4
,
293
–
301
,
2016
.
10.1515/aot-2016-0021 Google Scholar
- Alojaly , H.M. , Hammouda , A. , Benyounis , K.Y. , Review of recent developments on metal matrix composites with particulate reinforcement , Elsevier , Amsterdam, Netherlands , 2023 .
-
Feng , K.
,
Hu , S.
,
Zhao , W.
,
et al
.,
Bimodal powder optimization in SiC binder jetting for mechanical performance
.
Int. J. Mech. Sci.
,
274
,
109278
,
2024
.
10.1016/j.ijmecsci.2024.109278 Google Scholar
- He , Y. , Liang , H. , Chen , M. , et al ., Optical fiber waveguiding soft photo-actuators exhibiting giant reversible shape change . Adv. Opt. Mater. , 9 , 21 , 2101132 , 2021 .
- Humar , M. , Ravnik , M. , Pajk , S. , Mŭsevič , I. , Electrically tunable liquid crystal optical microresonators . Nat. Photonics , 3 , 10 , 595 – 600 , 2009 .
- Armani , D. , Kippenberg , T. , Spillane , S. , Vahala , K. , Ultra-high-Q toroid microcavity on a chip . Nat. , 421 , 6926 , 925 – 928 , 2003 .
- Flatae , A.M. , Burresi , M. , Zeng , H. , et al ., Optically controlled elastic microcavities . Light Sci. Appl. , 4 , 4 , e282 – e282 , 2015 .
- Nocentini , S. , Riboli , F. , Burresi , M. , Martella , D. , Parmeggiani , C. , Wiersma , D.S. , Three-Dimensional Photonic Circuits in Rigid and Soft Polymers Tunable by Light . ACS Photonics , 5 , 8 , 3222 – 3230 , 2018 . doi: 10.1021/acsphotonics.8b00461 .
- Rogalski , A. , Infrared detectors: status and trends . Prog. Quantum Electron. , 27 , 2 , 59 – 210 , 2003 . doi: https://doi.org/ 10.1016/S0079-6727(02)00024-1 .
-
Rogalski , A.
,
Novel uncooled infrared detectors
.
Opto-Electron. Rev.
,
18
,
4
,
478
–
492
,
2010
.
10.2478/s11772-010-0059-y Google Scholar
- Chen , C. , Yi , X. , Zhao , X. , Xiong , B. , Characterizations of VO2-based uncooled microbolometer linear array . Sens. Actuators, A , 90 , 3 , 212 – 214 , 2001 .
- Kang , D.H. , Kim , K.W. , Lee , S.Y. , Kim , Y.H. , Gil , S.K. , Influencing factors on the pyroelectric properties of Pb (Zr, Ti)O3 thin film for uncooled infrared detector . Mater. Chem. Phys. , 90 , 2–3 , 411 – 416 , 2005 .
-
Schaufelbuhl , A.
,
Schneeberger , N.
,
Munch , U.
,
et al
.,
Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array
.
J. Microelectromech. Syst.
,
10
,
4
,
503
–
510
,
2001
. doi:
10.1109/84.967372
.
10.1109/84.967372 Google Scholar
- Hui , Y. , Gomez-Diaz , J.S. , Qian , Z. , Alu , A. , Rinaldi , M. , Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing . Nat. Commun. , 7 , 1 , 11249 , 2016 .
- Adiyan , U. , Larsen , T. , Zárate , J.J. , Villanueva , L.G. , Shea , H. , Shape memory polymer resonators as highly sensitive uncooled infrared detectors . Nat. Commun. , 10 , 1 , 4518 , 2019 .
- Ahmed , A. , Arya , S. , Gupta , V. , Furukawa , H. , Khosla , A. , 4D printing: Fundamentals, materials, applications and challenges . Polymer , 228 , 123926 , 2021 .
- Ali , M. , Alam , F. , Fah , Y.F. , Shiryayev , O. , Vahdati , N. , Butt , H. , 4D printed thermochromic Fresnel lenses for sensing applications . Composites, Part B , 230 , 109514 , 2022 .
- Lu , X. , Ambulo , C.P. , Wang , S. , et al ., 4D-printing of photoswitchable actuators . Angew. Chem. Int. Ed. , 60 , 10 , 5536 – 5543 , 2021 .
- Yang , H. , Leow , W.R. , Wang , T. , et al ., 3D printed photoresponsive devices based on shape memory composites . Adv. Mater. , 29 , 33 , 1701627 , 2017 .
- Naficy , S. , Gately , R. , Gorkin , I.I.I.R. , Xin , H. , Spinks , G.M. , 4D printing of reversible shape morphing hydrogel structures . Macromol. Mater. Eng. , 302 , 1 , 1600212 , 2017 .
-
Cao , J.
,
Zhou , C.
,
Su , G.
,
et al
.,
Arbitrarily 3D configurable hygroscopic robots with a covalent–noncovalent interpenetrating network and self-healing ability
.
Adv. Mater.
,
31
,
18
,
1900042
,
2019
.
10.1002/adma.201900042 Google Scholar
- Duan , J. , Cui , L. , Li , M. , Fan , W. , Sui , K. , Biomimetic 3D Color-Changing Hydrogel Actuators Constructed Based on Soft Permeable Photonic Crystals . ACS Appl. Mater. Interfaces , 15 , 46 , 54018 – 54026 , 2023 .
- Jeong , H.Y. , An , S.C. , Jun , Y.C. , Light activation of 3D-printed structures: from millimeter to submicrometer scale . Nanophotonics , 11 , 3 , 461 – 486 , 2022 .
- Umar , M. , Min , K. , Kim , S. , Advances in hydrogel photonics and their applications . APL Photonics , 4 , 12 , 120901 , 2019 .
- Dong , Y. , Wang , S. , Ke , Y. , et al ., 4D printed hydrogels: fabrication, materials, and applications . Adv. Mater. Technol. , 5 , 6 , 2000034 , 2020 .
- Bodkhe , S. and Ermanni , P. , 3D printing of multifunctional materials for sensing and actuation: Merging piezoelectricity with shape memory . Eur. Polym. J. , 132 , 109738 , 2020 .
- Del Pozo , M. , Delaney , C. , Bastiaansen , C.W. , Diamond , D. , Schenning , A.P. , Florea , L. , Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist . ACS Nano , 14 , 8 , 9832 – 9839 , 2020 .
- Zhang , P. , Debije , M.G. , dLT , H. , Schenning , A.P. , Pigmented structural color actuators fueled by near-infrared light . ACS Appl. Mater. Interfaces , 14 , 17 , 20093 – 20100 , 2022 .
- Huang , F. , Weng , Y. , Lin , Y. , Zhang , X. , Wang , Y. , Chen , S. , Wetting-enhanced structural color for convenient and reversible encryption of optical information . ACS Appl. Mater. Interfaces , 13 , 35 , 42276 – 42286 , 2021 .
- Zhang , W. , Wang , H. , Wang , H. , et al ., Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers . Nat. Commun. , 12 , 1 , 112 , 2021 .
- Jeong , H.Y. , Woo , B.H. , Kim , N. , Jun , Y.C. , Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation . Sci. Rep. , 10 , 1 , 6258 , 2020 .