Characterization Techniques for Four Dimensional (4D) Printed Parts
Bijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBharat Charan Goud Marupalli
Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorPranabjyoti Talukdar
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAnita Jena
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorRoja Rani Korrayi
Institute of Material Research, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Search for more papers by this authorTapasendra Adhikary
Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBharat Charan Goud Marupalli
Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorPranabjyoti Talukdar
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAnita Jena
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorRoja Rani Korrayi
Institute of Material Research, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Search for more papers by this authorTapasendra Adhikary
Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Dept. of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorSummary
Characterization techniques are essential for evaluating the properties and behavior of smart materials involved in four-dimensional (4D) printing. Smart materials possess unique properties that respond to external stimuli such as temperature, pressure, electric fields, or magnetic fields. Characterization helps in understanding these properties thoroughly, including how they change under different conditions. Thermal characterization provides insights into thermal properties, transition temperatures, heat resistance, and thermal conductivity, influencing the performance of 4D printed components. Mechanical characterization techniques, including tensile, compressive, and shear testing, assess the mechanical behavior and recovery of shape memory materials. Surface roughness analysis evaluates the quality and aesthetics of 4D printed parts. Microstructure analysis techniques analyze the internal structures, defects, and surface roughness of printed components. Dimensional accuracy and precision play a crucial role in guaranteeing the fidelity of printed parts to the intended design. Non-destructive testing methods allow for quality inspection without damaging the parts. Shape memory testing techniques evaluate the response of materials to stimuli. These characterization techniques enable optimization of design parameters, part quality, and performance, driving advancements in four dimesnional additive manufacturing.
References
- Gibson , I. , Rosen , D.W. , Stucker , B. , Springer , U.S. , Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing , Springer, Springer New York , USA , 2010 , doi: 10.1007/978-1-4419-1120-9/COVER .
- Tibbits , S. , The emergence of ‘4D printing,’ , TED Conferences, LLC (Technology, Entertainment, Design) , New York, USA 2013 , Accessed: Jan. 24, 2021. [Online]. Available: https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing .
-
Samal , B.B.
,
Jena , A.
,
Varshney , S.K.
,
Kumar , C.S.
,
FDM 4D printing: A low-cost approach of shape programming and assessing the shape memory properties using angle measurement methods in hot water actuation testing apparatus
.
Mater. Today Proc.
,
101
,
7
–
14
,
2023
. doi:
10.1016/j.matpr.2023.02.038
.
10.1016/j.matpr.2023.02.038 Google Scholar
-
Samal , B.B.
,
Varshney , S.K.
,
Kumar , C.S.
,
Four-dimensional (4D) printing through FDM: Effect of infill density and bed temperature on shape memory properties in different thermo-mechanical programming conditions
.
J. Mech. Sci. Technol.
,
38
,
8
,
4313
–
4319
,
2024
. doi:
10.1007/s12206-024-0727-3
.
10.1007/s12206-024-0727-3 Google Scholar
-
Kuang , X.
,
Yue , L.
,
Qi , H.J.
,
Introduction to 4D Printing: Concepts and Material Systems
, in:
Additive Manufacturing Technology
, pp.
1
–
42
,
John Wiley & Sons, Ltd
,
Weinheim, Germany
,
2023
, doi: https://doi.org/
10.1002/9783527833931.ch1
.
10.1002/9783527833931.ch1 Google Scholar
-
Bodaghi , M.
and
Zolfagharian , A.
,
1 - 4D printing principles and manufacturing
, in:
Smart Materials in Additive Manufacturing
,
M. Bodaghi
and
X.X.X.A. Zolfagharian
(Eds.), pp.
1
–
17
,
Elsevier
,
Amsterdam, Netherlands
,
2022
, doi: https://doi.org/
10.1016/B978-0-12-824082-3.00014-3
.
10.1016/B978?0?12?824082?3.00014?3 Google Scholar
- Rayate , A. and Jain , P.K. , A Review on 4D Printing Material Composites and Their Applications . Mater. Today Proc. , 5 , 9 , Part 3, 20474 – 20484 , 2018 . doi: https://doi.org/ 10.1016/j.matpr.2018.06.424 .
- Ahmed , A. , Arya , S. , Gupta , V. , Furukawa , H. , Khosla , A. , 4D printing: Fundamentals, materials, applications and challenges . Polymer , 228 , 123926 , 2021 . doi: https://doi.org/ 10.1016/j.polymer.2021.123926 .
-
Kumar , A.
,
Ramadas , H.
,
Samal , B.B.
,
Kumar , C.S.
,
Nath , A.K.
,
Laser polishing of cobalt chrome alloy fabricated by laser powder bed fusion process: design of experiment-based approach for reducing surface roughness
.
Int. J. Adv. Manuf. Technol.
,
1245
–
1264
,
2024
. doi:
10.1007/s00170-024-14101-w
.
10.1007/s00170-024-14101-w Google Scholar
-
Kumar , A.
,
Samal , B.B.
,
Nath , A.K.
,
Kumar , C.S.
,
Laser surface modification of metal additive manufactured parts : A case study of
ex-situ
and
in-situ
methodology
, in:
Surface Engineering
, pp.
121
–
144
,
CRC Press
,
Boca Raton, Florida, USA
,
2022
, doi:
10.1201/9781003319375-5
.
10.1201/9781003319375-5 Google Scholar
-
Segovia Ramírez , I.
,
García Márquez , F.P.
,
Papaelias , M.
,
Review on additive manufacturing and non-destructive testing
.
J. Manuf. Syst.
,
66
,
260
–
286
,
2023
. doi: https://doi.org/
10.1016/j.jmsy.2022.12.005
.
10.1016/j.jmsy.2022.12.005 Google Scholar
-
Nezhad , I.S.
,
Golzar , M.
,
Hossein Behravesh , A.
,
Zare , S.
,
Comprehensive study on shape shifting behaviors in FDM-based 4D printing of bilayer structures
.
Int. J. Adv. Manuf. Technol.
,
120
,
1
,
959
–
974
,
2022
. doi:
10.1007/s00170-022-08741-z
.
10.1007/s00170-022-08741-z Google Scholar
-
Ebeid , E.-Z.M.
and
Zakaria , M.B.
,
Chapter 3 - Thermal analysis in materials science
, in:
Thermal Analysis
,
E.-Z.M. Ebeid
and
M.B. Zakaria
(Eds.), pp.
129
–
166
,
Elsevier
,
Amsterdam, Netherlands
,
2021
, doi: https://doi.org/
10.1016/B978-0-323-90191-8.00003-8
.
10.1016/B978-0-323-90191-8.00003-8 Google Scholar
- Azra , C. , Plummer , C.J.G. , Månson , J.-A.E. , Dynamic mechanical analysis for rapid assessment of the time-dependent recovery behavior of shape memory polymers . Smart Mater. Struct. , 22 , 7 , 75037 , Jun. 2013 . doi: 10.1088/0964-1726/22/7/075037 .
-
Bergström , J.
,
2 - Experimental Characterization Techniques
, in:
Mechanics of Solid Polymers
,
J. Bergström
(Ed.), pp.
19
–
114
,
William Andrew Publishing
,
Amsterdam, Netherlands
,
2015
, doi: https://doi.org/
10.1016/B978-0-323-31150-2.00002-9
.
10.1016/B978-0-323-31150-2.00002-9 Google Scholar
-
Kaliva , M.
and
Vamvakaki , M.
,
Chapter 17 - Nanomaterials characterization
, in:
Polymer Science and Nanotechnology
,
R. Narain
(Ed.), pp.
401
–
433
,
Elsevier
,
Amsterdam, Netherlands
,
2020
, doi: https://doi.org/
10.1016/B978-0-12-816806-6.00017-0
.
10.1016/B978-0-12-816806-6.00017-0 Google Scholar
-
Skjærvø , S.L.
,
Juelsholt , M.
,
Jensen , K.M.Ø.
,
10.10 -
In situ
scattering studies of material formation during wet-chemical syntheses
, in:
Comprehensive Inorganic Chemistry III (Third Edition)
,
Third
,
J. Reedijk
and
K.R. Poeppelmeier
(Eds.), pp.
248
–
272
,
Elsevier
,
Oxford
,
2023
, doi: https://doi.org/
10.1016/B978-0-12-823144-9.00023-6
.
10.1016/B978?0?12?823144?9.00023?6 Google Scholar
-
Bumbrah , G.S.
and
Sharma , R.M.
,
Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse
.
Egypt. J. Forensic Sci.
,
6
,
3
,
209
–
215
,
2016
. doi: https://doi.org/
10.1016/j.ejfs.2015.06.001
.
10.1016/j.ejfs.2015.06.001 Google Scholar
-
Cross , J.O.
,
Opila , R.L.
,
Boyd , I.W.
,
Kaufmann , E.N.
,
Materials characterization and the evolution of materials
.
MRS Bull.
,
40
,
12
,
1019
–
1034
,
2015
. doi:
10.1557/mrs.2015.271
.
10.1557/mrs.2015.271 Google Scholar
-
Zhang , S.
,
Li , L.
,
Kumar , A.
,
Materials characterization techniques
,
CRC press
,
Boca Raton, Florida, USA
,
2008
.
10.1201/9781420042955 Google Scholar
-
Sharma , S.K.
,
Verma , D.S.
,
Khan , L.U.
,
Kumar , S.
,
Khan , S.B.
,
Handbook of materials characterization
,
Springer
,
Switzerland
,
2018
.
10.1007/978-3-319-92955-2 Google Scholar
-
Kern , J.
,
Additive Manufacturing
, in:
The Digital Transformation of Logistics
, pp.
41
–
60
,
John Wiley & Sons, Ltd
,
Hoboken, New Jersey, USA
,
2021
, doi: https://doi.org/
10.1002/9781119646495.ch4
.
10.1002/9781119646495.ch4 Google Scholar
- Subramaniyan , M. , Karuppan , S. , Eswaran , P. , Anandhamoorthy , A. , Review on 4D printing materials, stimuli and its future application . Int. J. Mech. Prod. Eng. Res. Dev. , 9 , 316 – 327 , 2019 . [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063477827&partnerID=40&md5=85fac0842c2e7d3bc832de01af3888ea .
- Shin , S. and So , H. , Effect of 3D printing raster angle on reversible thermo-responsive composites using PLA/paper bilayer . Smart Mater. Struct. , 29 , 10 , 105016 , Oct. 2020 . doi: 10.1088/1361-665X/aba490 .
-
Xin , X.
,
Liu , L.
,
Liu , Y.
,
Leng , J.
,
Mechanical Models, Structures, and Applications of Shape-Memory Polymers and Their Composites
.
Acta Mech. Solida Sin.
,
535
–
565
,
2019
. doi:
10.1007/s10338-019-00103-9
.
10.1007/s10338-019-00103-9 Google Scholar
- Barbarino , S. , Saavedra Flores , E.L. , Ajaj , R.M. , Dayyani , I. , Friswell , M.I. , A review on shape memory alloys with applications to morphing aircraft . Smart Mater. Struct. , 23 , 6 , 063001 , Jun. 2014 . doi: 10.1088/0964-1726/23/6/063001 .
- Chae , M.P. , Hunter-Smith , D.J. , De-Silva , I. , Tham , S. , Spychal , R.T. , Rozen , W.M. , Four-Dimensional (4D) Printing: A New Evolution in Computed Tomography-Guided Stereolithographic Modeling Principles and Application . J. Reconstructive Microsurgery , 31 , 6 , 458 – 463 , 2015 . doi: 10.1055/s-0035-1549006 .
- Mao , Y. , Yu , K. , Isakov , M.S. , Wu , J. , Dunn , M.L. , Jerry Qi , H. , Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers . Sci. Rep. , 5 , 13616 , 2015 . doi: 10.1038/srep13616 .
- Jeong , H.Y. , An , S.-C. , Lim , Y. , Jeong , M.J. , Kim , N. , Jun , Y.C. , 3D and 4D Printing of Multistable Structures . Appl. Sci. , 10 , 20 , 7254 , 2020 . doi: 10.3390/app10207254 .
- Nabavian Kalat , M. , et al ., Investigating a shape memory epoxy resin and its application to engineering shape-morphing devices empowered through kinematic chains and compliant joints . Mater. Des. , 233 , 112263 , 2023 . doi: https://doi.org/ 10.1016/j.matdes.2023.112263 .
- Ngo , T.D. , Kashani , A. , Imbalzano , G. , Nguyen , K.T.Q. , Hui , D. , Additive manufacturing (3D printing): A review of materials, methods, applications and challenges . Composites, Part B , 143 , 172 – 196 , 2018 . doi: https://doi.org/ 10.1016/j.compositesb.2018.02.012 .
- Han , Y. , Griffiths , R.J. , Yu , H.Z. , Zhu , Y. , Quantitative microstructure analysis for solid-state metal additive manufacturing via deep learning . J. Mater. Res. , 35 , 15 , 1936 – 1948 , 2020 . doi: 10.1557/jmr.2020.120 .
- Somireddy , M. and Czekanski , A. , Anisotropic material behavior of 3D printed composite structures – Material extrusion additive manufacturing . Mater. Des. , 195 , 108953 , 2020 . doi: https://doi.org/ 10.1016/j.matdes.2020.108953 .
- Du , C. , et al ., Pore defects in Laser Powder Bed Fusion: Formation mechanism, control method, and perspectives . J. Alloys Compd. , 944 , 169215 , 2023 . doi: https://doi.org/ 10.1016/j.jallcom.2023.169215 .
- Li , H. , Brodie , E.G. , Hutchinson , C. , Predicting the chemical homogeneity in laser powder bed fusion (LPBF) of mixed powders after remelting . Addit. Manuf. , 65 , 103447 , 2023 . doi: https://doi.org/ 10.1016/j.addma.2023.103447 .
- Li , M. , Liu , Z. , Ho , J.Y. , Wong , T.N. , Improving Homogeneity of 3D-Printed Cementitious Material Distribution for Radial Toolpath . Fluids , 8 , 3 , 87 , 2023 . doi: 10.3390/fluids8030087 .
-
Sanaei , N.
,
Fatemi , A.
,
Phan , N.
,
Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing
.
Mater. Des.
,
182
,
108091
,
2019
. doi: https://doi.org/
10.1016/j.matdes.2019.108091
.
10.1016/j.matdes.2019.108091 Google Scholar
- Wan , X. , et al ., Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications . Adv. Mater. , 36 , 34 , 2312263 , 2024 . doi: https://doi.org/ 10.1002/adma.202312263 .
-
Yu , Y.
,
et al
.,
Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing
.
Comput.-Aided Des.
,
122
,
102817
,
2020
. doi: https://doi.org/
10.1016/j.cad.2020.102817
.
10.1016/j.cad.2020.102817 Google Scholar
-
Bril , M.
,
Fredrich , S.
,
Kurniawan , N.A.
,
Stimuli-responsive materials: A smart way to study dynamic cell responses
.
Smart Mater. Med.
,
3
,
257
–
273
,
2022
. doi: https://doi.org/
10.1016/j.smaim.2022.01.010
.
10.1016/j.smaim.2022.01.010 Google Scholar
- Gazzaniga , A. , et al ., Towards 4D printing in pharmaceutics . Int. J. Pharm.: X , 5 , 100171 , 2023 . doi: https://doi.org/ 10.1016/j.ijpx.2023.100171 .
-
Lefkowitch , J.H.
,
Chapter 17 - Electron Microscopy and Other Techniques
, in:
Scheuer's Liver Biopsy Interpretation (Tenth Edition)
,
Tenth
,
J.H. Lefkowitch
(Ed.), pp.
410
–
430
,
Elsevier
,
London
,
2021
, doi: https://doi.org/
10.1016/B978-0-7020-7584-1.00017-6
.
10.1016/B978-0-7020-7584-1.00017-6 Google Scholar
-
Cañada , J.
and
Velásquez-García , L.F.
,
Monolithically 3D-Printed, Self-Heating Microfluidics
, in:
2023 IEEE 22nd International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)
, pp.
210
–
213
,
2023
, doi:
10.1109/PowerMEMS59329.2023.10417177
.
10.1109/PowerMEMS59329.2023.10417177 Google Scholar
- Li , H. , et al ., Dual and triple shape memory properties of poly(ε-caprolactone)-based cross-linked polymer elastomers . Polym. Test. , 115 , 107738 , 2022 . doi: https://doi.org/ 10.1016/j.polymertesting.2022.107738 .
- Hornat , C.C. , et al ., Quantitative predictions of maximum strain storage in shape memory polymers (SMP) . Polymer , 186 , 122006 , 2020 . doi: https://doi.org/ 10.1016/j.polymer.2019.122006 .
- Korrayi , R.R. , Jena , A. , Marupalli , B.C.G. , Samal , B.B. , Varshney , S.K. , Kumar , C.S. , pp. 429 – 457 , John Wiley & Sons, Ltd , River Street, USA & Beverly, MA, USA , 2024 , doi: https://doi.org/ 10.1002/9781394198085.ch14 .
-
Adam , G.
,
Benouhiba , A.
,
Rabenorosoa , K.
,
Clévy , C.
,
Cappelleri , D.J.
,
4D Printing: Enabling Technology for Microrobotics Applications
.
Adv. Intell. Syst.
,
3
,
5
,
2000216
,
2021
. doi: https://doi.org/
10.1002/aisy.202000216
.
10.1002/aisy.202000216 Google Scholar
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , 4D Printing of Shape Memory Polymers: A Comparative Study of Programming Methodologies on Various Material Properties . Smart Mater. Struct. , 32 , 7 , 074003 , May 2023 . doi: 10.1088/1361-665X/acda6e .
- Capulli , A.K. , et al ., JetValve: Rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement . Biomaterials , 133 , 229 – 241 , 2017 . doi: https://doi.org/ 10.1016/j.biomaterials.2017.04.033 .
- Dizon , J.R.C. , Espera , A.H. , Chen , Q. , Advincula , R.C. , Mechanical characterization of 3D-printed polymers . Addit. Manuf. , 20 , 44 – 67 , 2018 . doi: https://doi.org/ 10.1016/j.addma.2017.12.002 .
-
Riva , L.
,
Ginestra , P.S.
,
Ceretti , E.
,
Mechanical characterization and properties of laser-based powder bed–fused lattice structures: a review
.
Int. J. Adv. Manuf. Technol.
,
113
,
3
,
649
–
671
,
2021
. doi:
10.1007/s00170-021-06631-4
.
10.1007/s00170-021-06631-4 Google Scholar
-
C., Z
.,
et al
.,
Mechanical properties and shape memory behavior of 4D printed functionally graded cellular structures
.
Sci. China Technol. Sci.
,
66
,
12
,
3522
–
3533
,
2023
. doi:
10.1007/s11431-023-2475-3
.
10.1007/s11431-023-2475-3 Google Scholar
- Xia , Y. , He , Y. , Zhang , F. , Liu , Y. , Leng , J. , A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications . Adv. Mater. , 33 , 6 , 2000713 , 2021 . doi: https://doi.org/ 10.1002/adma.202000713 .
- Wang , Q. , Wang , J. , Wang , A. , Zhou , C. , Hu , J. , Pan , F. , Effect of Strain Rate and Temperature on the Tensile Properties of Long Glass Fiber-Reinforced Polypropylene Composites . Polymers , 15 , 15 , 3260 , 2023 . doi: 10.3390/polym15153260 .
- Zeng , C. , Liu , L. , Lin , C. , Xin , X. , Liu , Y. , Leng , J. , 4D printed continuous fiber reinforced shape memory polymer composites with enhanced mechanical properties and shape memory effects . Composites, Part A , 180 , 108085 , 2024 . doi: https://doi.org/ 10.1016/j.compositesa.2024.108085 .
- Safai , L. , Cuellar , J.S. , Smit , G. , Zadpoor , A.A. , A review of the fatigue behavior of 3D printed polymers . Addit. Manuf. , 28 , 87 – 97 , 2019 . doi: https://doi.org/ 10.1016/j.addma.2019.03.023 .
- Xu , P. , et al ., Compression behavior of 4D printed metamaterials with various Poisson's ratios . Int. J. Mech. Sci. , 264 , 108819 , 2024 . doi: https://doi.org/ 10.1016/j.ijmecsci.2023.108819 .
- Sieberer , S. , Savandaiah , C. , Leßlhumer , J. , Schagerl , M. , Shear property measurement of additively manufactured continuous fibre reinforced plastics by in-plane torsion testing . Addit. Manuf. , 55 , 102805 , 2022 . doi: https://doi.org/ 10.1016/j.addma.2022.102805 .
- Lim , T. , Cheng , H. , Song , W. , Lee , J. , Kim , S. , Jung , W. , Simulated and Experimental Investigation of Mechanical Properties for Improving Isotropic Fracture Strength of 3D-Printed Capsules . Materials , 14 , 16 , 4677 , 2021 . doi: 10.3390/ma14164677 .
-
Phillips , C.
,
Kortschot , M.
,
Azhari , F.
,
Towards standardizing the preparation of test specimens made with material extrusion: Review of current techniques for tensile testing
.
Addit. Manuf.
,
58
,
103050
,
2022
. doi: https://doi.org/
10.1016/j.addma.2022.103050
.
10.1016/j.addma.2022.103050 Google Scholar
- Wawrzyniak , N. , Provencher , P.R. , Brochu , M. , Brochu , M. , Tensile properties of SS316L produced by LPBF: Influence of specimen dimensions and surface condition . Mater. Charact. , 203 , 113117 , 2023 . doi: https://doi.org/ 10.1016/j.matchar.2023.113117 .
- Popescu , D. , Zapciu , A. , Amza , C. , Baciu , F. , Marinescu , R. , FDM process parameters influence over the mechanical properties of polymer specimens: A review . Polym. Test. , 69 , 157 – 166 , 2018 . doi: https://doi.org/ 10.1016/j.polymertesting.2018.05.020 .
- Sun , J. , Yang , Y. , Wang , D. , Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting . Mater. Des. , 49 , 545 – 552 , 2013 . doi: https://doi.org/ 10.1016/j.matdes.2013.01.038 .
-
James , S.
and
Dang , C.
,
Investigation of shear failure load in ultrasonic additive manufacturing of 3D CFRP/Ti structures
.
J. Manuf. Processes
,
56
,
1317
–
1321
,
2020
. doi: https://doi.org/
10.1016/j.jmapro.2020.04.026
.
10.1016/j.jmapro.2020.04.026 Google Scholar
- Sarkar , S. , Siva Kumar , C. , Kumar Nath , A. , Effect of mean stresses on mode of failures and fatigue life of selective laser melted stainless steel . Mater. Sci. Engineering A , 700 , 92 – 106 , 2017 . doi: https://doi.org/ 10.1016/j.msea.2017.05.118 .
-
A.P. Mouritz
(Ed.),
5 - Mechanical and durability testing of aerospace materials
, in:
Introduction to Aerospace Materials
, pp.
91
–
127
,
Woodhead Publishing
,
Cambridge, UK
,
2012
, doi: https://doi.org/
10.1533/9780857095152.91
.
10.1533/9780857095152.91 Google Scholar
- Sarkar , S. , Kumar , C.S. , Nath , A.K. , Effects of heat treatment and build orientations on the fatigue life of selective laser melted 15-5 PH stainless steel . Mater. Sci. Engineering A , 755 , 235 – 245 , 2019 . doi: https://doi.org/ 10.1016/j.msea.2019.04.003 .
- Speirs , M. , Van Hooreweder , B. , Van Humbeeck , J. , Kruth , J.-P. , Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison . J. Mech. Behav. Biomed. Mater. , 70 , 53 – 59 , 2017 . doi: https://doi.org/ 10.1016/j.jmbbm.2017.01.016 .
-
Waqas , A.
,
Xiansheng , Q.
,
Jiangtao , X.
,
Chaoran , Y.
,
Fan , L.
,
Impact toughness of components made by GMAW based additive manufacturing
.
Procedia Struct. Integrity
,
13
,
2065
–
2070
,
2018
. doi: https://doi.org/
10.1016/j.prostr.2018.12.207
.
10.1016/j.prostr.2018.12.207 Google Scholar
-
Popa , C.-F.
,
Mărghitaș , M.-P.
,
Galațanu , S.-V.
,
Marșavina , L.
,
Influence of thickness on the IZOD impact strength of FDM printed specimens from PLA and PETG
.
Procedia Struct. Integrity
,
41
,
557
–
563
,
2022
. doi: https://doi.org/
10.1016/j.prostr.2022.05.064
.
10.1016/j.prostr.2022.05.064 Google Scholar
- Ty , A. , Mokhtari , M. , Balcaen , Y. , Votié , A. , Cloué , J.-M. , Alexis , J. , Performance evaluation of Charpy impact tests to investigate and detect process defects of a Ni-based superalloy elaborated by laser powder bed fusion . J. Mater. Res. Technol. , 25 , 6644 – 6659 , 2023 . doi: https://doi.org/ 10.1016/j.jmrt.2023.07.064 .
- Compton , B.G. , Post , B.K. , Duty , C.E. , Love , L. , Kunc , V. , Thermal analysis of additive manufacturing of large-scale thermoplastic polymer composites . Addit. Manuf. , 17 , 77 – 86 , 2017 . doi: https://doi.org/ 10.1016/j.addma.2017.07.006 .
- Shanmugam , V. , Babu , K. , Kannan , G. , Mensah , R.A. , Samantaray , S.K. , Das , O. , The thermal properties of FDM printed polymeric materials: A review . Polym. Degrad. Stab. , 228 , 110902 , 2024 . doi: https://doi.org/ 10.1016/j.polymdegradstab.2024.110902 .
- Goo , B. , Hong , C.-H. , Park , K. , 4D printing using anisotropic thermal deformation of 3D-printed thermoplastic parts . Mater. Des. , 188 , 108485 , 2020 . doi: https://doi.org/ 10.1016/j.matdes.2020.108485 .
- Shemelya , C. , et al ., Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites . Addit. Manuf. , 16 , 186 – 196 , 2017 . doi: https://doi.org/ 10.1016/j.addma.2017.05.012 .
- Blanco , I. , Cicala , G. , Recca , G. , Tosto , C. , Specific Heat Capacity and Thermal Conductivity Measurements of PLA-Based 3D-Printed Parts with Milled Carbon Fiber Reinforcement . Entropy , 24 , 5 , 654 , 2022 . doi: 10.3390/e24050654 .
- Rădulescu , B. , et al ., Thermal Expansion of Plastics Used for 3D Printing . Polymers , 14 , 15 , 3061 , 2022 . doi: 10.3390/polym14153061 .
- Farzinazar , S. , Wang , Y. , Abdol-Hamid Owens , C. , Yang , C. , Lee , H. , Lee , J. , Thermal transport in 3D printed shape memory polymer metamaterials . APL Mater. , 10 , 8 , 81105 , Aug. 2022 . doi: 10.1063/5.0094036 .
- Prajapati , H. , Ravoori , D. , Woods , R.L. , Jain , A. , Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM) . Addit. Manuf. , 21 , 84 – 90 , 2018 . doi: https://doi.org/ 10.1016/j.addma.2018.02.019 .
- Doostmohammadi , H. , Kashmarizad , K. , Baniassadi , M. , Bodaghi , M. , Baghani , M. , 4D printing and optimization of biocompatible poly lactic acid/poly methyl methacrylate blends for enhanced shape memory and mechanical properties . J. Mech. Behav. Biomed. Mater. , 160 , 106719 , 2024 . doi: https://doi.org/ 10.1016/j.jmbbm.2024.106719 .
- Ghalayaniesfahani , A. , Oostenbrink , B. , van Kasteren , H. , Gibson , I. , Mehrpouya , M. , 4D printing of biobased shape memory sandwich structures . Polymer , 307 , 127252 , 2024 . doi: https://doi.org/ 10.1016/j.polymer.2024.127252 .
-
Alqahtani , S.
,
Ali , H.M.
,
Farukh , F.
,
Silberschmidt , V.V.
,
Kandan , K.
,
Thermal performance of additively manufactured polymer lattices
.
J. Build. Eng.
,
39
,
102243
,
2021
. doi: https://doi.org/
10.1016/j.jobe.2021.102243
.
10.1016/j.jobe.2021.102243 Google Scholar
- Markovits , T. and Varga , L.F. , Investigating the surface roughness of 3D printed metal parts in case of thin 20 μm build layer thickness . J. Mater. Res. , 39 , 13 , 1841 – 1851 , 2024 . doi: 10.1557/s43578-023-01254-9 .
-
Jin , Y.
,
Li , H.
,
He , Y.
,
Fu , J.
,
Quantitative analysis of surface profile in fused deposition modelling
.
Addit. Manuf.
,
8
,
142
–
148
,
2015
. doi: https://doi.org/
10.1016/j.addma.2015.10.001
.
10.1016/j.addma.2015.10.001 Google Scholar
- Mahmood , M.A. , Chioibasu , D. , Ur Rehman , A. , Mihai , S. , Popescu , A.C. , Post-Processing Techniques to Enhance the Quality of Metallic Parts Produced by Additive Manufacturing . Metals , 12 , 1 , 77 , 2022 . doi: 10.3390/met12010077 .
-
Boban , J.
,
Ahmed , A.
,
Jithinraj , E.K.
,
Rahman , M.A.
,
Rahman , M.
,
Polishing of additive manufactured metallic components: retrospect on existing methods and future prospects
.
Int. J. Adv. Manuf. Technol.
,
121
,
1
,
83
–
125
,
2022
. doi:
10.1007/s00170-022-09382-y
.
10.1007/s00170-022-09382-y Google Scholar
- Liu , Z. , et al ., Additive manufacturing of metals: Microstructure evolution and multistage control . J. Mater. Sci. Technol. , 100 , 224 – 236 , 2022 . doi: https://doi.org/ 10.1016/j.jmst.2021.06.011 .
-
Le Duigou , A.
,
Correa , D.
,
Ueda , M.
,
Matsuzaki , R.
,
Castro , M.
,
A review of 3D and 4D printing of natural fibre biocomposites
.
Mater. Des.
,
194
,
108911
,
2020
. doi: https://doi.org/
10.1016/j.matdes.2020.108911
.
10.1016/j.matdes.2020.108911 Google Scholar
-
Wang , P.
,
et al
.,
Scanning optical microscopy for porosity quantification of additively manufactured components
.
Addit. Manuf.
,
21
,
350
–
358
,
2018
. doi: https://doi.org/
10.1016/j.addma.2018.03.019
.
10.1016/j.addma.2018.03.019 Google Scholar
-
Zhou , W.
,
Apkarian , R.
,
Wang , Z.L.
,
Joy , D.
Fundamentals of Scanning Electron Microscopy (SEM)
. In:
W. Zhou
,
Z.L. Wang
(eds)
Scanning Microscopy for Nanotechnology
.
Springer
,
New York, NY
.,
2006
, https://doi. org/
10.1007/978-0-387-39620-0_1
.
10.1007/978-0-387-39620-0_1 Google Scholar
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , 4D Printing Technology: Experimental investigation of thermoresponsive shape-changing honeycomb and negative honeycomb structures for different proposed programming strategies , in: 대한기계학회 춘추학술대회 , p. 10 , 2023 , [Online]. Available: https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11708468 .
-
Aliheidari , N.
,
Tripuraneni , R.
,
Hohimer , C.
,
Christ , J.
,
Ameli , A.
,
Nadimpalli , S.
,
The impact of nozzle and bed temperatures on the fracture resistance of FDM printed materials
, in:
Proc. SPIE
, vol.
10165
, p.
1016512
, Apr.
2017
, doi:
10.1117/12.2260105
.
10.1117/12.2260105 Google Scholar
- Dey , A. and Yodo , N. , A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics . J. Manuf. Mater. Process. , 3 , 3 , 64 , 2019 . doi: 10.3390/jmmp3030064 .
-
Lee , P.-H.
,
Chung , H.
,
Lee , S.W.
,
Yoo , J.
,
Ko , J.
,
Review: Dimensional Accuracy in Additive Manufacturing Processes
, International Manufacturing Science and Engineering Conference (MSEC), Jun. 09,
2014
,
American Society of Mechanical Engineers
,
Detroit, Michigan, USA
. doi:
10.1115/MSEC2014-4037
.
10.1115/MSEC2014?4037 Google Scholar
- Al-Ahmari , A. , Ashfaq , M. , Mian , S.H. , Ameen , W. , Evaluation of additive manufacturing technologies for dimensional and geometric accuracy . Int. J. Mater. Prod. Technol. , 58 , 2–3 , 129 – 154 , Jan. 2019 . doi: 10.1504/IJMPT.2019.097665 .
-
Berger , U.
,
Aspects of accuracy and precision in the additive manufacturing of plastic gears
.
Virtual Phys. Prototyping
,
10
,
2
,
49
–
57
, Apr.
2015
. doi:
10.1080/17452759.2015.1026127
.
10.1080/17452759.2015.1026127 Google Scholar
-
Mansi , H.K.
and
Singholi , A.K.S.
,
Additive Manufacturing Metrology
, in:
Handbook of Metrology and Applications
,
D.K. Aswal
,
S. Yadav
,
T. Takatsuji
,
P. Rachakonda
,
H. Kumar
(Eds.), pp.
1165
–
1180
,
Springer Nature Singapore
,
Singapore
,
2023
, doi:
10.1007/978-981-99-2074-7_60
.
10.1007/978-981-99-2074-7_60 Google Scholar
-
Paul , R.
and
Anand , S.
,
Optimization of layered manufacturing process for reducing form errors with minimal support structures
.
J. Manuf. Syst.
,
36
,
231
–
243
,
2015
. doi: https://doi.org/
10.1016/j.jmsy.2014.06.014
.
10.1016/j.jmsy.2014.06.014 Google Scholar
-
Helsel , M.A.
,
Popovics , J.S.
,
Stynoski , P.B.
,
Kreiger , E.
,
Non-destructive testing to characterize interlayer bonds of idealized concrete additive manufacturing products
.
NDT & E Int.
,
121
,
102443
,
2021
. doi: https://doi.org/
10.1016/j.ndteint.2021.102443
.
10.1016/j.ndteint.2021.102443 Google Scholar