From 3D Printing to 4D Printing
Adding Time Dimension
Bijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorDebadutta Mishra
Department of Production Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
Search for more papers by this authorMarwan Nafea
Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
Search for more papers by this authorAnita Jena
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorDebadutta Mishra
Department of Production Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
Search for more papers by this authorMarwan Nafea
Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
Search for more papers by this authorAnita Jena
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Dept. of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorSummary
The field of additive manufacturing has evolved significantly from traditional 3D printing to the emerging domain of 4D printing, where time becomes a critical functional dimension. This paper explores the transition from 3D to 4D printing, focusing on the incorporation of dynamic behaviors in printed materials that respond to external fillip such as temperature, light, humidity, and magnetic fields. It highlights the historical development of 4D printing, driven by advancements in smart materials such as shape memory polymers, hydrogels, and liquid crystal elastomers. The study identifies key challenges in this transition, including material limitations, scalability issues, and regulatory concerns. Despite these obstacles, 4D printing holds immense potential, particularly in sectors like aerospace, healthcare, and architecture, where adaptable and self-transforming materials can unlock unprecedented functionality. The paper also examines future trends, such as the development of multi-functional materials, the integration of artificial intelligence, and the expansion of 4D printing applications in biomedicine and sustainable manufacturing. As research continues, 4D printing is poised to transform the manufacturing industry by enabling the development of intelligent, programmable structures capable of dynamically adapting to changing environments.
References
- Mahmood , A. , Akram , T. , Chen , H. , Chen , S. , On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges . Polymers , 14 , 21 , 4698 , 2022 . doi: 10.3390/polym14214698 .
-
Fidan , I.
,
et al
.,
Recent Inventions in Additive Manufacturing: Holistic Review
.
Inventions
,
8
,
4
,
103
,
2023
. doi:
10.3390/inventions8040103
.
10.3390/inventions8040103 Google Scholar
- Tibbits , S. , The emergence of ‘4D printing,’ , TED Conferences, LLC (Technology, Entertainment, Design) , New York, USA , 2013 , Accessed: Jan. 24, 2021. [Online]. Available: https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing .
-
Tibbits , S.
,
4D printing: Multi-material shape change
.
Archit. Des.
,
84
,
1
,
116
–
121
, Jan.
2014
. doi: https://doi.org/
10.1002/ad.1710
.
10.1002/ad.1710 Google Scholar
-
Samal , B.B.
,
Jena , A.
,
Varshney , S.K.
,
Kumar , C.S.
,
4D printing: An experimental case study on processing of shape memory polymer by FDM/FFF for nature inspired structures
, in:
Advances in Additive Manufacturing Artificial Intelligence, Nature-Inspired, and Biomanufacturing
,
A. Kumar
,
R.K. Mittal
,
A. Haleem
(Eds.), pp.
361
–
377
,
Elsevier
,
Amsterdam
,
2023
, doi:
10.1016/B978-0-323-91834-3.00019-3
.
10.1016/B978-0-323-91834-3.00019-3 Google Scholar
-
Singh , S.
,
Mehla , S.
,
Bhargava , S.K.
,
Ramakrishna , S.
,
History and Evolution of Additive Manufacturing
, in:
Additive Manufacturing for Chemical Sciences and Engineering
,
S.K. Bhargava
,
S. Ramakrishna
,
M. Brandt
,
P.R. Selvakannan
(Eds.), pp.
19
–
51
,
Springer Nature Singapore
,
Singapore
,
2022
, doi:
10.1007/978-981-19-2293-0_2
.
10.1007/978-981-19-2293-0_2 Google Scholar
- Beaman , J.J. , Bourell , D.L. , Seepersad , C.C. , Kovar , D. , Additive Manufacturing Review: Early Past to Current Practice . J. Manuf. Sci. Eng. , 142 , 11 , 110812 , 2020 . doi: 10.1115/1.4048193 .
-
Kruth , J.-P.
,
Leu , M.C.
,
Nakagawa , T.
,
Progress in Additive Manufacturing and Rapid Prototyping
.
CIRP Ann.
,
47
,
2
,
525
–
540
,
1998
. doi: https://doi.org/
10.1016/S0007-8506(07)63240-5
.
10.1016/S0007-8506(07)63240-5 Google Scholar
-
Savastano , M.
,
Amendola , C.
,
D′Ascenzo , F.
,
Massaroni , E.
,
3-D Printing in the Spare Parts Supply Chain: An Explorative Study in the Automotive Industry BT
, in:
Digitally Supported Innovation
, pp.
153
–
170
,
2016
.
10.1007/978-3-319-40265-9_11 Google Scholar
- Leinster , M. , Things pass by , in: Thrilling Wonder Stories , vol. 27 , pp. 11 – 35 , Beacon Magazines, Inc , New York , 1945 .
-
Pei , E.
,
Kabir , I.R.
,
Leutenecker-Twelsiek , B.
,
History of AM
, in:
Springer Handbook of Additive Manufacturing
,
E. Pei
,
A. Bernard
,
D. Gu
,
C. Klahn
,
M. Monzón
,
M. Petersen
,
T. Sun
(Eds.), pp.
3
–
29
,
Springer International Publishing
,
Cham
,
2023
, doi:
10.1007/978-3-031-20752-5_1
.
10.1007/978-3-031-20752-5_1 Google Scholar
-
Krishna , R.
,
Manjaiah , M.
,
Mohan , C.B.
,
Chapter 3 - Developments in additive manufacturing
, in:
Additive Manufacturing
,
M. Manjaiah
,
K. Raghavendra
,
N. Balashanmugam
,
J.P. Davim
(Eds.), pp.
37
–
62
,
Woodhead Publishing
,
Duxford, United Kingdom
,
2021
, doi: https://doi.org/
10.1016/B978-0-12-822056-6.00002-3
.
10.1016/B978-0-12-822056-6.00002-3 Google Scholar
-
Rajan , K.
,
Samykano , M.
,
Kadirgama , K.
,
Harun , W.S.W.
,
Rahman , M.M.
,
Fused deposition modeling: process, materials, parameters, properties, and applications
.
Int. J. Adv. Manuf. Technol.
,
120
,
3
,
1531
–
1570
,
2022
. doi:
10.1007/s00170-022-08860-7
.
10.1007/s00170-022-08860-7 Google Scholar
-
Savini , A.
and
Savini , G.G.
,
A short history of 3D printing, a technological revolution just started
.
2015 ICOHTEC/IEEE International History of High-Technologies and their Socio-Cultural Contexts Conference (HISTELCON)
, pp.
1
–
8
,
2015
, doi:
10.1109/HISTELCON.2015.7307314
.
10.1109/HISTELCON.2015.7307314 Google Scholar
-
Gibson , I.
,
Rosen , D.W.
,
Stucker , B.
,
Development of Additive Manufacturing Technology
, in:
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
, pp.
36
–
58
,
Springer US
,
Boston, MA
,
2010
, doi:
10.1007/978-1-4419-1120-9_2
.
10.1007/978-1-4419-1120-9_2 Google Scholar
-
Malone , E.
and
Lipson , H.
,
Fab@Home: the personal desktop fabricator kit
.
Rapid Prototyping J.
,
13
,
4
,
245
–
255
, Jan.
2007
. doi:
10.1108/13552540710776197
.
10.1108/13552540710776197 Google Scholar
-
Sells , E.
,
Bailard , S.
,
Smith , Z.
,
Bowyer , A.
,
Olliver , V.
,
RepRap: The Replicating Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production
, in:
Handbook of Research in Mass Customization and Personalization
, pp.
568
–
580
, doi:
10.1142/9789814280280_0028
.
10.1142/9789814280280_0028 Google Scholar
- Sufaru , I.-G. , et al ., 3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review . Membranes , 12 , 9 , 902 , 2022 . doi: 10.3390/membranes12090902 .
-
Chua , C.K.
and
Leong , K.F.
,
3D Printing and Additive Manufacturing
,
4th
,
World Scientific
,
Singapore
,
2014
, doi:
10.1142/9008
.
10.1142/9008 Google Scholar
- Raviv , D. , et al ., Active printed materials for complex self-evolving deformations . Sci. Rep. , 4 , 7422 , 2014 . doi: 10.1038/srep07422 .
- Ge , Q. , Dunn , C.K. , Qi , H.J. , Dunn , M.L. , Active origami by 4D printing . Smart Mater. Struct. , 23 , 9 , 094007 , 2014 . doi: 10.1088/0964-1726/23/9/094007 .
- Ge , Q. , Mao , Y. , Yu , K. , Dunn , M.L. , Qi , H.J. , Active composites and 4D printing , ICCM International Conferences on Composite Materials, Copenhagen, Denmark , 2015 .
- Gladman , A.S. , Matsumoto , E.A. , Nuzzo , R.G. , Mahadevan , L. , Lewis , J.A. , Biomimetic 4D printing . Nat. Mater. , 15 , 4 , 413+ , Apr. 2016 . doi: 10.1038/NMAT4544 .
- Samal , B.B. , Jena , A. , Mishra , D. , Controlled Shape Changing Components by Using 4D Printing Technology , in: 10th International Conference on Precision, Meso, Micro and Nano Engineering (COPEN 10) , IIT Madras , October, pp. 78 – 81 , 2017 , no. October, Accessed: Feb. 05, 2021. [Online]. Available: http://www.copen.ac.in/proceedings/copen10/copen/19.revised_manuscript_262.pdf .
- Huang , L. , et al ., Ultrafast Digital Printing toward 4D Shape Changing Materials . Adv. Mater. , 29 , 7 , 1605390 , 2017 . doi: https://doi.org/ 10.1002/adma.201605390 .
-
Samal , B.B.
,
Varshney , S.K.
,
Kumar , C.S.
,
Four-dimensional (4D) printing through FDM: Effect of infill density and bed temperature on shape memory properties in different thermo-mechanical programming conditions
.
J. Mech. Sci. Technol.
,
38
,
8
,
4313
–
4319
,
2024
. doi:
10.1007/s12206-024-0727-3
.
10.1007/s12206-024-0727-3 Google Scholar
- Bodaghi , M. , Damanpack , A.R. , Liao , W.H. , Adaptive metamaterials by functionally graded 4D printing . Mater. Des. , 135 , 26 – 36 , Dec. 2017 . doi: 10.1016/j.matdes.2017.08.069 .
- Liu , G. , Zhao , Y. , Wu , G. , Lu , J. , Origami and 4D printing of elastomer-derived ceramic structures . Sci. Adv. , 4 , 8 , eaat0641 , 2018 . doi: 10.1126/sciadv.aat0641 .
- Samal , B.B. , Jena , A. , Mishra , D. , Indian Researchers Develop World's Strongest 4D Printed Parts , in: Manufactur3D magazine , 2018 , Accessed: Jan. 28, 2020. [Online]. Available: https://manufactur3dmag.com/indian-researchers-develop-worlds-strongest-4d-printed-parts/ .
- Zhu , P. , Yang , W. , Wang , R. , Gao , S. , Li , B. , Li , Q. , 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus . ACS Appl. Mater. Interfaces , 10 , 42 , 36435 – 36442 , Oct. 2018 . doi: 10.1021/acsami.8b12853 .
-
Bodaghi , M.
,
Damanpack , A.R.
,
Liao , W.H.
,
Triple shape memory polymers by 4D printing
.
Smart Mater. Struct.
,
27
,
6
,
065010
, Jun.
2018
. doi:
10.1088/1361-665X/aabc2a
.
10.1088/1361-665X/aabc2a Google Scholar
- Wang , Q. , Tian , X. , Huang , L. , Li , D. , Malakhov , A.V. , Polilov , A.N. , Programmable morphing composites with embedded continuous fibers by 4D printing . Mater. Des. , 155 , 404 – 413 , 2018 . doi: https://doi.org/ 10.1016/j.matdes.2018.06.027 .
- Kuang , X. , et al ., Grayscale digital light processing 3D printing for highly functionally graded materials . Sci. Adv. , 5 , 5 , eaav5790 , 2019 . doi: 10.1126/sciadv.aav5790 .
- Schwartz , J.J. and Boydston , A.J. , Multimaterial actinic spatial control 3D and 4D printing . Nat. Commun. , 10 , 1 , 791 , 2019 . doi: 10.1038/s41467-019-08639-7 .
- Li , Z. , et al ., Bioinspired Simultaneous Changes in Fluorescence Color, Brightness, and Shape of Hydrogels Enabled by AIEgens . Adv. Mater. , 32 , 11 , 1906493 , 2020 . doi: https://doi.org/ 10.1002/adma.201906493 .
- Kim , S.H. , et al ., 4D-bioprinted silk hydrogels for tissue engineering . Biomaterials , 260 , 120281 , 2020 . doi: https://doi.org/ 10.1016/j.biomaterials.2020.120281 .
-
Korrayi , R.R.
,
Jena , A.
,
Marupalli , B.C.G.
,
Samal , B.B.
,
Varshney , S.K.
,
Kumar , C.S.
,
Four-Dimensional (4D) Microprinting
, in:
Additive Manufacturing with Novel Materials
, pp.
429
–
457
,
John Wiley & Sons, Ltd
,
River Street, Hoboken, USA & Beverly, MA, USA
,
2024
, doi: https://doi.org/
10.1002/9781394198085.ch14
.
10.1002/9781394198085.ch14 Google Scholar
- Spiegel , C.A. , et al ., 4D Printing at the Microscale . Adv. Funct. Mater. , 30 , 26 , 1907615 , 2020 . doi: https://doi.org/ 10.1002/adfm.201907615 .
- Hu , Y. , et al ., Botanical-Inspired 4D Printing of Hydrogel at the Microscale . Adv. Funct. Mater. , 30 , 4 , 1907377 , 2020 . doi: https://doi.org/ 10.1002/adfm.201907377 .
- Xin , X. , Liu , L. , Liu , Y. , Leng , J. , 4D Printing Auxetic Metamaterials with Tunable, Programmable, and Reconfigurable Mechanical Properties . Adv. Funct. Mater. , 30 , 43 , 2004226 , 2020 . doi: https://doi.org/ 10.1002/adfm.202004226 .
- He , C. , Zhang , M. , Guo , C. , 4D printing of mashed potato/purple sweet potato puree with spontaneous color change . Innov. Food Sci. Emerg. Technol. , 59 , 102250 , 2020 . doi: https://doi.org/ 10.1016/j.ifset.2019.102250 .
-
Choong , Y.Y.C.
,
Maleksaeedi , S.
,
Eng , H.
,
Yu , S.
,
Wei , J.
,
Su , P.-C.
,
High speed 4D printing of shape memory polymers with nanosilica
.
Appl. Mater. Today
,
18
,
100515
,
2020
. doi: https://doi.org/
10.1016/j.apmt.2019.100515
.
10.1016/j.apmt.2019.100515 Google Scholar
- Tao , Y. , et al ., Morphing pasta and beyond . Sci. Adv. , 7 , 19 , eabf4098 , 2021 . doi: 10.1126/sciadv.abf4098 .
- Kim , K. , et al ., 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators . Small , 17 , 23 , 2100910 , 2021 . doi: https://doi.org/ 10.1002/smll.202100910 .
- Zhang , C. , et al ., 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation . Acta Biomater. , 122 , 101 – 110 , 2021 . doi: https://doi.org/ 10.1016/j.actbio.2020.12.042 .
- Ma , S. , et al ., 4D printing of PLA/PCL shape memory composites with controllable sequential deformation . Bio-Des. Manuf. , 4 , 4 , 867 – 878 , 2021 . doi: 10.1007/s42242-021-00151-6 .
-
van Manen , T.
,
Janbaz , S.
,
Jansen , K.M.B.
,
Zadpoor , A.A.
,
4D printing of reconfigurable metamaterials and devices
.
Commun. Mater.
,
2
,
1
,
56
,
2021
. doi:
10.1038/s43246-021-00165-8
.
10.1038/s43246-021-00165-8 Google Scholar
- Li , K. , et al ., 4D printing of MXene hydrogels for high-efficiency pseudo-capacitive energy storage . Nat. Commun. , 13 , 1 , 6884 , 2022 . doi: 10.1038/s41467-022-34583-0 .
- Sun , X. , et al ., Machine Learning-Evolutionary Algorithm Enabled Design for 4D-Printed Active Composite Structures . Adv. Funct. Mater. , 32 , 10 , 2109805 , 2022 . doi: https://doi.org/ 10.1002/adfm.202109805 .
-
Lee , W.H.
,
Alshebly , Y.S.
,
Mohamed Ali , M.S.
,
Nafea , M.
,
Development of a 4D Printed Variable Stiffness Gripper
, in:
2022 IEEE 20th Student Conference on Research and Development (SCOReD)
, pp.
151
–
156
,
2022
, doi:
10.1109/SCOReD57082.2022.9973965
.
10.1109/SCOReD57082.2022.9973965 Google Scholar
- Cheah , D.S. , Alshebly , Y.S. , Ali , M.S.M. , Nafea , M. , Development of 4D-printed shape memory polymer large-stroke XY micropositioning stages . J. Micromech. Microeng. , 32 , 6 , 65006 , May 2022 . doi: 10.1088/1361-6439/ ac68ca.
- Pandey , H. , Mohol , S.S. , Kandi , R. , 4D printing of tracheal scaffold using shape-memory polymer composite . Mater. Lett. , 329 , 133238 , 2022 . doi: https://doi.org/ 10.1016/j.matlet.2022.133238 .
- Peng , X. , et al ., 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing . Adv. Mater. , 34 , 39 , 2204890 , 2022 . doi: https://doi.org/ 10.1002/adma.202204890 .
- Liu , H. , Wang , F. , Wu , W. , Dong , X. , Sang , L. , 4D printing of mechanically robust PLA/TPU/Fe3O4 magneto-responsive shape memory polymers for smart structures . Composites, Part B , 248 , 110382 , 2023 . doi: https://doi.org/ 10.1016/j.compositesb.2022.110382 .
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , FDM 4D printing: A low-cost approach of shape programming and assessing the shape memory properties using angle measurement methods in hot water actuation testing apparatus . Mater. Today Proc. , 101 , 7 – 14 , 2024 . doi: 10.1016/j.matpr.2023.02.038 .
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , 4D Printing of Shape Memory Polymers: A Comparative Study of Programming Methodologies on Various Material Properties . Smart Mater. Struct. , 32 , 7 , 074003 , May 2023 . doi: 10.1088/1361-665X/acda6e .
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , 4D Printing Technology: Experimental investigation of thermoresponsive shape-changing honeycomb and negative honeycomb structures for different proposed programming strategies , in: 대한기계학회 춘추학술대회 , p. 10 , 2023 , [Online]. Available: https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11708468 .
-
Li , G.
,
et al
.,
Biomimetic 4D printing of dome-shaped dynamic mechanical metamaterials
.
J. Mater. Res. Technol.
,
24
,
4047
–
4059
,
2023
. doi: https://doi.org/
10.1016/j.jmrt.2023.04.039
.
10.1016/j.jmrt.2023.04.039 Google Scholar
- Wu , W. , et al ., Metallic 4D Printing of Laser Stimulation . Adv. Sci. , 10 , 12 , 2206486 , 2023 . doi: https://doi.org/ 10.1002/advs.202206486 .
- Wang , F. , et al ., 4D printing of ceramic structures . Addit. Manuf. , 63 , 103411 , 2023 . doi: https://doi.org/ 10.1016/j.addma.2023.103411 .
- Liu , G. , et al ., 4D Additive–Subtractive Manufacturing of Shape Memory Ceramics . Adv. Mater. , 35 , 39 , 2302108 , 2023 . doi: https://doi.org/ 10.1002/adma.202302108 .
- Xu , X. , et al ., Regenerative Living 4D Printing via Reversible Growth of Polymer Networks . Adv. Mater. , 35 , 16 , 2209824 , 2023 . doi: https://doi.org/ 10.1002/adma.202209824 .
-
Einstein , A.
,
Die Grundlage der allgemeinen Relativitätstheorie
.
Ann. Phys.
,
354
,
7
,
769
–
822
,
1916
. doi: https://doi.org/
10.1002/andp.19163540702
.
10.1002/andp.19163540702 Google Scholar
- Chae , M.P. , Hunter-Smith , D.J. , De-Silva , I. , Tham , S. , Spychal , R.T. , Rozen , W.M. , Four-Dimensional (4D) Printing: A New Evolution in Computed Tomography-Guided Stereolithographic Modeling Principles and Application . J. Reconstructive Microsurgery , 31 , 6 , 458 – 463 , 2015 . doi: 10.1055/s-0035-1549006 .
-
Bodaghi , M.
and
Zolfagharian , A.
,
1 - 4D printing principles and manufacturing
, in:
Smart Materials in Additive Manufacturing
,
M. Bodaghi
and
X.X.X.A. Zolfagharian
(Eds.), pp.
1
–
17
,
Elsevier
,
Amsterdam, Netherlands
,
2022
, doi: https://doi.org/
10.1016/B978-0-12-824082-3.00014-3
.
10.1016/B978?0?12?824082?3.00014?3 Google Scholar
-
Anas Ansar , S.
,
Singh , A.
,
Aggrawal , S.
,
Soni , N.
,
Chandra Pathak , P.
,
A Systematic Review on 4D Printing Technology
.
Mater. Today Proc.
,
2023
. doi: https://doi.org/
10.1016/j.matpr.2023.02.413
.
10.1016/j.matpr.2023.02.413 Google Scholar
- Ahmed , A. , Arya , S. , Gupta , V. , Furukawa , H. , Khosla , A. , 4D printing: Fundamentals, materials, applications and challenges . Polymer , 228 , 123926 , 2021 . doi: https://doi.org/ 10.1016/j.polymer.2021.123926 .
-
Lyu , Z.
,
Wang , J.
,
Chen , Y.
,
4D printing: interdisciplinary integration of smart materials, structural design, and new functionality
.
Int. J. Extreme Manuf.
,
5
,
3
,
32011
, Jul.
2023
. doi:
10.1088/2631-7990/ace090
.
10.1088/2631-7990/ace090 Google Scholar
- Sahafnejad-Mohammadi , I. , Karamimoghadam , M. , Zolfagharian , A. , Akrami , M. , Bodaghi , M. , 4D printing technology in medical engineering: a narrative review . J. Braz. Soc. Mech. Sci. Eng. , 44 , 6 , 233 , 2022 . doi: 10.1007/s40430-022-03514-x .
-
Momeni , F.
and
Ni , J.
,
Laws of 4D Printing
.
Engineering
,
6
,
9
,
1035
–
1055
,
2020
. doi: https://doi.org/
10.1016/j.eng.2020.01.015
.
10.1016/j.eng.2020.01.015 Google Scholar
-
Demoly , F.
,
Dunn , M.L.
,
Wood , K.L.
,
Qi , H.J.
,
André , J.-C.
,
The status, barriers, challenges, and future in design for 4D printing
.
Mater. Des.
,
212
,
110193
,
2021
. doi: https://doi.org/
10.1016/j.matdes.2021.110193
.
10.1016/j.matdes.2021.110193 Google Scholar
- Wan , X. , et al ., Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications . Adv. Mater. , 36 , 34 , 2312263 , 2024 . doi: https://doi.org/ 10.1002/adma.202312263 .
- Hu , J. , Zhu , Y. , Huang , H. , Lu , J. , Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications . Prog. Polym. Sci. , 37 , 12 , 1720 – 1763 , 2012 . doi: https://doi.org/ 10.1016/j.progpolymsci.2012.06.001 .
-
Taylor , S.
,
Mueller , E.
,
Jones , L.R.
,
Makela , A.V.
,
Ashammakhi , N.
,
Translational Aspects of 3D and 4D Printing and Bioprinting
.
Adv. Healthcare Mater.
, n/a, n/a,
2400463
, 09 July
2024
. doi: https://doi.org/
10.1002/adhm.202400463
.
10.1002/adhm.202400463 Google Scholar
-
Kuang , X.
,
et al
.,
Advances in 4D Printing: Materials and Applications
.
Adv. Funct. Mater.
,
1805290
,
2019
. doi:
10.1002/adfm.201805290
.
10.1002/adfm.201805290 Google Scholar
- Pugliese , R. and Regondi , S. , Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches . Polymers , 14 , 14 , 2794 , 2022 . doi: 10.3390/polym14142794 .
-
Alli , Y.A.
,
et al
.,
Optimization of 4D/3D printing via machine learning: A systematic review
.
Hybrid Adv.
,
6
,
100242
,
2024
. doi: https://doi.org/
10.1016/j.hybadv.2024.100242
.
10.1016/j.hybadv.2024.100242 Google Scholar
- Ramezani , M. and Mohd Ripin , Z. , 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions . J. Funct. Biomater. , 14 , 7 , 347 , 2023 . doi: 10.3390/jfb14070347 .
-
Lalegani Dezaki , M.
and
Bodaghi , M.
,
Sustainable 4D printing of magneto-electroactive shape memory polymer composites
.
Int. J. Adv. Manuf. Technol.
,
126
,
1
,
35
–
48
,
2023
. doi:
10.1007/s00170-023-11101-0
.
10.1007/s00170-023-11101-0 Google Scholar