Importance of Additive Manufacturing in the Era of Industry 4.0
Bijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAbhishek Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAnita Jena
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorDebadutta Mishra
Department of Production Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAshish Kumar Nath
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAbhishek Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAnita Jena
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorDebadutta Mishra
Department of Production Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAshish Kumar Nath
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Dept. of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorSummary
The Industrial Revolution has undoubtedly shaped human history, with its continual development since the eighteenth century leading to four major transformations, and potentially a fifth yet to come. At the forefront of this revolution is Industry 4.0, embodying extensive digitization, interconnections, and data analytics. Within this modern industrial movement, Additive Manufacturing (AM) plays a crucial role, facilitating decentralized production, customization, and sustainability. This integration is made possible by a variety of technological enablers, including the Internet of Things (IoT), big data analytics, cloud computing, and artificial intelligence. With its ability to create intricate structures and designs layer by layer, AM perfectly aligns with the core principles of Industry 4.0. This chapter delves into the dynamic synergy between AM and digital innovations, exploring how it is changing the face of modern manufacturing. By incorporating AM alongside digital twins and simulation technologies, manufacturing efficiency is significantly improved with the ability for live monitoring and proactive maintenance.
References
- Yang , F. and Gu , S. , Industry 4.0, a revolution that requires technology and national strategies . Complex Intell. Syst. , 7 , 3 , 1311 – 1325 , 2021 . doi: 10.1007/s40747-020-00267-9 .
-
Alenizi , F.A.
,
Abbasi , S.
,
Hussein Mohammed , A.
,
Masoud Rahmani , A.
,
The artificial intelligence technologies in Industry 4.0: A taxonomy, approaches, and future directions
.
Comput. Ind. Eng.
,
185
,
109662
,
2023
. doi: https://doi.org/
10.1016/j.cie.2023.109662
.
10.1016/j.cie.2023.109662 Google Scholar
-
Haddara , M.
and
Elragal , A.
,
The Readiness of ERP Systems for the Factory of the Future
.
Procedia Comput. Sci.
,
64
,
721
–
728
,
2015
. doi: https://doi.org/
10.1016/j.procs.2015.08.598
.
10.1016/j.procs.2015.08.598 Google Scholar
-
Vaidya , S.
,
Ambad , P.
,
Bhosle , S.
,
Industry 4.0 – A Glimpse
.
Procedia Manuf.
,
20
,
233
–
238
,
2018
. doi: https://doi.org/
10.1016/j.promfg.2018.02.034
.
10.1016/j.promfg.2018.02.034 Google Scholar
- Selvam , A. , Aggarwal , T. , Mukherjee , M. , Verma , Y.K. , Humans and robots: Friends of the future? A bird's eye view of biomanufacturing industry 5.0 . Biotechnol. Adv. , 68 , 108237 , 2023 . doi: https://doi.org/ 10.1016/j.biotechadv.2023.108237 .
-
Zhang , C.
,
et al
.,
Towards new-generation human-centric smart manufacturing in Industry 5.0: A systematic review
.
Adv. Eng. Inf.
,
57
,
102121
,
2023
. doi: https://doi.org/
10.1016/j.aei.2023.102121
.
10.1016/j.aei.2023.102121 Google Scholar
- Maddikunta , P.K.R. , et al ., Industry 5.0: A survey on enabling technologies and potential applications . J. Ind. Inf. Integr. , 26 , 100257 , 2022 . doi: https://doi.org/ 10.1016/j.jii.2021.100257 .
-
Wong , K.V.
and
Hernandez , A.
,
A Review of Additive Manufacturing
.
ISRN Mech. Eng.
,
2012
,
208760
,
2012
. doi:
10.5402/2012/208760
.
10.5402/2012/208760 Google Scholar
-
Gao , W.
,
et al
.,
The status, challenges, and future of additive manufacturing in engineering
.
Comput.-Aided Des.
,
69
,
65
–
89
,
2015
. doi: https://doi.org/
10.1016/j.cad.2015.04.001
.
10.1016/j.cad.2015.04.001 Google Scholar
-
Dilberoglu , U.M.
,
Gharehpapagh , B.
,
Yaman , U.
,
Dolen , M.
,
The Role of Additive Manufacturing in the Era of Industry 4.0
.
Procedia Manuf.
,
11
,
545
–
554
,
2017
. doi: https://doi.org/
10.1016/j.promfg.2017.07.148
.
10.1016/j.promfg.2017.07.148 Google Scholar
-
Čater , T.
,
Čater , B.
,
Černe , M.
,
Koman , M.
,
Redek , T.
,
Industry 4.0 technologies usage: motives and enablers
.
J. Manuf. Technol. Manage.
,
32
,
9
,
323
–
345
, Jan.
2021
. doi:
10.1108/JMTM-01-2021-0026
.
10.1108/JMTM-01-2021-0026 Google Scholar
- Manavalan , E. and Jayakrishna , K. , A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements . Comput. Ind. Eng. , 127 , 925 – 953 , 2019 . doi: https://doi.org/ 10.1016/j.cie.2018.11.030 .
-
Sharma , A.
and
Pandey , H.
,
Big Data and Analytics in Industry 4.0 BT - A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development
,
A. Nayyar
and
A. Kumar
(Eds.), pp.
57
–
72
,
Springer International Publishing
,
Cham
,
2020
, doi:
10.1007/978-3-030-14544-6_4
.
10.1007/978?3?030?14544?6_4 Google Scholar
-
O'Donovan , P.
,
Gallagher , C.
,
Leahy , K.
,
O'Sullivan , D.T.J.
,
A comparison of fog and cloud computing cyber-physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications
.
Comput. Ind.
,
110
,
12
–
35
,
2019
. doi: https://doi.org/
10.1016/j.compind.2019.04.016
.
10.1016/j.compind.2019.04.016 Google Scholar
-
Rao , T.V.N.
,
Gaddam , A.
,
Kurni , M.
,
Saritha , K.
,
Reliance on Artificial Intelligence, Machine Learning and Deep Learning in the Era of Industry 4.0
, in:
Smart Healthcare System Design
, pp.
281
–
299
,
John Wiley & Sons, Ltd
,
River Street, Hoboken, USA & Beverly, MA, USA
,
2022
, doi: https://doi.org/
10.1002/9781119792253.ch12
.
10.1002/9781119792253.ch12 Google Scholar
-
Zhou , K.
,
Liu , T.
,
Liang , L.
,
From cyber-physical systems to Industry 4.0: make future manufacturing become possible
.
Int. J. Manuf. Res.
,
11
,
2
,
167
–
188
,
2016
. doi:
10.1504/IJMR.2016.078251
.
10.1504/IJMR.2016.078251 Google Scholar
-
Lee , J.
,
Bagheri , B.
,
Kao , H.-A.
,
A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems
.
Manuf. Lett.
,
3
,
18
–
23
,
2015
. doi: https://doi.org/
10.1016/j.mfglet.2014.12.001
.
10.1016/j.mfglet.2014.12.001 Google Scholar
-
Krugh , M.
and
Mears , L.
,
A complementary Cyber-Human Systems framework for Industry 4.0 Cyber-Physical Systems
.
Manuf. Lett.
,
15
,
89
–
92
,
2018
. doi: https://doi.org/
10.1016/j.mfglet.2018.01.003
.
10.1016/j.mfglet.2018.01.003 Google Scholar
- Santi , G.M. , Ceruti , A. , Liverani , A. , Osti , F. , Augmented Reality in Industry 4.0 and Future Innovation Programs . Technologies , 9 , 2 , 33 , 2021 . doi: 10.3390/technologies9020033 .
-
Damiani , L.
,
Demartini , M.
,
Guizzi , G.
,
Revetria , R.
,
Tonelli , F.
,
Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era
.
IFAC-PapersOnLine
,
51
,
11
,
624
–
630
,
2018
. doi: https://doi.org/
10.1016/j.ifacol.2018.08.388
.
10.1016/j.ifacol.2018.08.388 Google Scholar
-
Prashar , G.
,
Vasudev , H.
,
Bhuddhi , D.
,
Additive manufacturing: expanding 3D printing horizon in industry 4.0
.
Int. J. Interact. Des. Manuf. (IJIDeM)
,
17
,
5
,
2221
–
2235
,
2023
. doi:
10.1007/s12008-022-00956-4
.
10.1007/s12008-022-00956-4 Google Scholar
-
Haleem , A.
and
Javaid , M.
,
Additive Manufacturing Applications in Industry 4.0: A Review.
J. Ind. Integr
.
Manage.
,
04
,
04
,
1930001
, Aug.
2019
. doi:
10.1142/S2424862219300011
.
10.1142/S2424862219300011 Google Scholar
-
Elhazmiri , B.
,
Naveed , N.
,
Anwar , M.N.
,
Haq , M. , II
,
The role of additive manufacturing in industry 4.0: An exploration of different business models
.
Sustain. Oper. Comput.
,
3
,
317
–
329
,
2022
. doi: https://doi.org/
10.1016/j.susoc.2022.07.001
.
10.1016/j.susoc.2022.07.001 Google Scholar
-
Javaid , M.
,
Haleem , A.
,
Pratap Singh , R.
,
Khan , S.
,
Suman , R.
,
Blockchain technology applications for Industry 4.0: A literature-based review
.
Blockchain: Res. Appl.
,
2
,
4
,
100027
, 2021. doi: https://doi.org/
10.1016/j.bcra.2021.100027
.
10.1016/j.bcra.2021.100027 Google Scholar
-
Bale , A.S.
,
Purohit , T.P.
,
Hashim , M.F.
,
Navale , S.
,
Blockchain and Its Applications in Industry 4.0
, in:
A Roadmap for Enabling Industry 4.0 by Artificial Intelligence
, pp.
295
–
313
,
John Wiley & Sons, Ltd
,
River Street, Hoboken, USA & Beverly, MA, USA
,
2022
, doi: https://doi.org/
10.1002/9781119905141.ch16
.
10.1002/9781119905141.ch16 Google Scholar
- Alhayani , B. , et al ., 5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: perspective of smart healthcare system . Appl. Nanosci. , 13 , 3 , 1807 – 1817 , 2023 . doi: 10.1007/s13204-021-02152-4 .
-
Javaid , M.
,
Haleem , A.
,
Rab , S.
,
Singh , R.P.
,
Suman , R.
,
Mohan , S.
,
Progressive schema of 5G for Industry 4.0: features, enablers, and services
.
Ind. Robot Int. J. Robotics Res. Appl.
,
49
,
3
,
527
–
543
, Jan.
2022
. doi:
10.1108/IR-10-2021-0226
.
10.1108/IR-10-2021-0226 Google Scholar
-
Sittón-Candanedo , I.
,
A New Approach: Edge Computing and Blockchain for Industry 4.0 BT
, in:
Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions
, pp.
201
–
204
,
2020
.
10.1007/978-3-030-23946-6_25 Google Scholar
-
Sittón-Candanedo , I.
,
Alonso , R.S.
,
Rodríguez-González , S.
,
García Coria , J.A.
,
De La Prieta , F.
,
Edge Computing Architectures in Industry 4.0: A General Survey and Comparison BT
, in:
14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019)
, pp.
121
–
131
,
2020
.
10.1007/978-3-030-20055-8_12 Google Scholar
-
Balubaid , M.
and
Alsaadi , N.
,
Achieving Sustainability in Manufacturing through Additive Manufacturing: An Analysis of Its Enablers
.
Sustainability
,
15
,
12
,
9504
,
2023
. doi:
10.3390/su15129504
.
10.3390/su15129504 Google Scholar
-
Butt , J.
,
Exploring the Interrelationship between Additive Manufacturing and Industry 4.0
.
Designs
,
4
,
2
,
13
,
2020
. doi:
10.3390/designs4020013
.
10.3390/designs4020013 Google Scholar
-
Karnik , N.
,
Bora , U.
,
Bhadri , K.
,
Kadambi , P.
,
Dhatrak , P.
,
A comprehensive study on current and future trends towards the characteristics and enablers of industry 4.0
.
J. Ind. Inf. Integr.
,
27
,
100294
,
2022
. doi: https://doi. org/
10.1016/j.jii.2021.100294
.
10.1016/j.jii.2021.100294 Google Scholar
- Hernandez Korner , M.E. , Lambán , M.P. , Albajez , J.A. , Santolaria , J. , del C. Ng Corrales , L. , Royo , J. , Systematic Literature Review: Integration of Additive Manufacturing and Industry 4.0 . Metals , 10 , 8 , 1061 , 2020 . doi: 10.3390/met10081061 .
-
Gaub , H.
,
Customization of mass-produced parts by combining injection molding and additive manufacturing with Industry 4.0 technologies
.
Reinf. Plast.
,
60
,
6
,
401
–
404
,
2016
. doi: https://doi.org/
10.1016/j.repl.2015.09.004
.
10.1016/j.repl.2015.09.004 Google Scholar
-
Parvanda , R.
and
Kala , P.
,
Trends, opportunities, and challenges in the integration of the additive manufacturing with Industry 4.0
.
Prog. Addit. Manuf.
,
8
,
3
,
587
–
614
,
2023
. doi:
10.1007/s40964-022-00351-1
.
10.1007/s40964-022-00351-1 Google Scholar
- Mehrpouya , M. , Dehghanghadikolaei , A. , Fotovvati , B. , Vosooghnia , A. , Emamian , S.S. , Gisario , A. , The Potential of Additive Manufacturing in the Smart Factory Industrial 4.0: A Review . Appl. Sci. , 9 , 18 , 3865 , 2019 . doi: 10.3390/app9183865 .
-
Iqbal , A.
,
Zhao , G.
,
Suhaimi , H.
,
He , N.
,
Hussain , G.
,
Zhao , W.
,
Readiness of subtractive and additive manufacturing and their sustainable amalgamation from the perspective of Industry 4.0: a comprehensive review
.
Int. J. Adv. Manuf. Technol.
,
111
,
9
,
2475
–
2498
,
2020
. doi:
10.1007/s00170-020-06287-6
.
10.1007/s00170-020-06287-6 Google Scholar
-
Azarian , M.
,
Yu , H.
,
Solvang , W.D.
,
Integrating Additive Manufacturing into a Virtual Industry 4.0 Factory BT
, in:
Advanced Manufacturing and Automation X
, pp.
587
–
594
,
2021
.
10.1007/978-981-33-6318-2_73 Google Scholar
-
Samal , B.B.
,
Varshney , S.K.
,
Kumar , C.S.
,
Four-dimensional (4D) printing through FDM: Effect of infill density and bed temperature on shape memory properties in different thermo-mechanical programming conditions
.
J. Mech. Sci. Technol.
,
38
,
8
,
4313
–
4319
,
2024
. doi:
10.1007/s12206-024-0727-3
.
10.1007/s12206-024-0727-3 Google Scholar
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , 4D Printing of Shape Memory Polymers: A Comparative Study of Programming Methodologies on Various Material Properties . Smart Mater. Struct. , 32 , 7 , 074003 , May 2023 . doi: 10.1088/1361-665X/acda6e .
- Samal , B.B. , Jena , A. , Mishra , D. , Controlled Shape Changing Components by Using 4D Printing Technology , in: 10th International Conference on Precision, Meso, Micro and Nano Engineering (COPEN 10) , IIT Madras , pp. 78 – 81 , 2017 , no. October, Accessed: Feb. 05, 2021. [Online]. Available: http://www.copen.ac.in/proceedings/copen10/copen/19.revised_manuscript_262.pdf .
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , FDM 4D printing: A low-cost approach of shape programming and assessing the shape memory properties using angle measurement methods in hot water actuation testing apparatus . Mater. Today Proc. , 101 , 7 – 14 , 2024 . doi: 10.1016/j.matpr.2023.02.038 .
-
Samal , B.B.
,
Jena , A.
,
Varshney , S.K.
,
Kumar , C.S.
,
4D printing: An experimental case study on processing of shape memory polymer by FDM/FFF for nature inspired structures
, in:
Advances in Additive Manufacturing Artificial Intelligence, Nature-Inspired, and Biomanufacturing
,
A. Kumar
,
R.K. Mittal
,
A. Haleem
(Eds.), pp.
361
–
377
,
Elsevier
,
Amsterdam
,
2023
, doi:
10.1016/B978-0-323-91834-3.00019-3
.
10.1016/B978-0-323-91834-3.00019-3 Google Scholar
-
Khorasani , M.
,
et al
.,
A review of Industry 4.0 and additive manufacturing synergy
.
Rapid Prototyping J.
,
28
,
8
,
1462
–
1475
, Jan.
2022
. doi:
10.1108/RPJ-08-2021-0194
.
10.1108/RPJ-08-2021-0194 Google Scholar
-
Ben-Ner , A.
and
Siemsen , E.
,
Decentralization and Localization of Production: The Organizational and Economic Consequences of Additive Manufacturing (3D Printing)
.
Calif. Manage. Rev.
,
59
,
2
,
5
–
23
,
2017
. doi:
10.1177/0008125617695284
.
10.1177/0008125617695284 Google Scholar
- Zhang , L. , et al ., Digital Twins for Additive Manufacturing: A State-of-the-Art Review . Appl. Sci. , 10 , 23 , 8350 , 2020 . doi: 10.3390/app10238350 .
- Leng , J. , Wang , D. , Shen , W. , Li , X. , Liu , Q. , Chen , X. , Digital twins-based smart manufacturing system design in Industry 4.0: A review . J. Manuf. Syst. , 60 , 119 – 137 , 2021 . doi: https://doi.org/ 10.1016/j.jmsy.2021.05.011 .
-
Olivotti , D.
,
Dreyer , S.
,
Lebek , B.
,
Breitner , M.H.
,
Creating the foundation for digital twins in the manufacturing industry: an integrated installed base management system
.
Inf. Syst. e-Business Manage.
,
17
,
1
,
89
–
116
,
2019
. doi:
10.1007/s10257-018-0376-0
.
10.1007/s10257-018-0376-0 Google Scholar
-
Liu , X.
,
et al
.,
A systematic review of digital twin about physical entities, virtual models, twin data, and applications
.
Adv. Eng. Inf.
,
55
,
101876
,
2023
. doi: https://doi.org/
10.1016/j.aei.2023.101876
.
10.1016/j.aei.2023.101876 Google Scholar
-
Chigilipalli , B.K.
,
Karri , T.
,
Chetti , S.N.
,
Bhiogade , G.
,
Kottala , R.K.
,
Cheepu , M.
,
A Review on Recent Trends and Applications of IoT in Additive Manufacturing
.
Appl. Syst. Innov.
,
6
,
2
,
50
,
2023
. doi:
10.3390/asi6020050
.
10.3390/asi6020050 Google Scholar
-
Lammens , N.
,
Gallego-Bordallo , F.
,
Ni , J.
,
Zinoviev , A.
,
De Weer , T.
,
Erdelyi , H.
,
The role of simulation in the industrialization of Additive Manufacturing
.
Procedia Struct. Integrity
,
34
,
247
–
252
,
2021
. doi: https://doi.org/
10.1016/j.prostr.2021.12.035
.
10.1016/j.prostr.2021.12.035 Google Scholar
- Sajid , S. , Haleem , A. , Bahl , S. , Javaid , M. , Goyal , T. , Mittal , M. , Data science applications for predictive maintenance and materials science in context to Industry 4.0 . Mater. Today Proc. , 45 , 4898 – 4905 , 2021 . doi: https://doi.org/ 10.1016/j.matpr.2021.01.357 .
- Zonta , T. , da Costa , C.A. , da Rosa Righi , R. , de Lima , M.J. , da Trindade , E.S. , Li , G.P. , Predictive maintenance in the Industry 4.0: A systematic literature review . Comput. Ind. Eng. , 150 , 106889 , 2020 . doi: https://doi.org/ 10.1016/j.cie.2020.106889 .
-
Mukherjee , T.
and
DebRoy , T.
,
A digital twin for rapid qualification of 3D printed metallic components
.
Appl. Mater. Today
,
14
,
59
–
65
,
2019
. doi: https://doi.org/
10.1016/j.apmt.2018.11.003
.
10.1016/j.apmt.2018.11.003 Google Scholar
-
Junk , S.
and
Rothe , N.
,
Lightweight design of automotive components using generative design with fiber-reinforced additive manufacturing
.
Procedia CIRP
,
109
,
119
–
124
,
2022
. doi: https://doi.org/
10.1016/j.procir.2022.05.224
.
10.1016/j.procir.2022.05.224 Google Scholar
-
Kumar , A.
,
Ramadas , H.
,
Samal , B.B.
,
Kumar , C.S.
,
Nath , A.K.
,
Laser polishing of cobalt chrome alloy fabricated by laser powder bed fusion process: design of experiment-based approach for reducing surface roughness
.
Int. J. Adv. Manuf. Technol.
,
1245
–
1264
,
2024
. doi:
10.1007/s00170-024-14101-w
.
10.1007/s00170-024-14101-w Google Scholar
-
Kumar , A.
,
Samal , B.B.
,
Nath , A.K.
,
Kumar , C.S.
,
Laser surface modification of metal additive manufactured parts : A case study of
ex-situ
and
in-situ
methodology
, in:
Surface Engineering
, pp.
121
–
144
,
CRC Press
,
Boca Raton, Florida, USA
,
2022
, doi:
10.1201/9781003319375-5
.
10.1201/9781003319375-5 Google Scholar
- Namin , A.T. , et al ., Adoption of New Medical Technologies: The Case of Customized Individually Made Knee Implants . Value Health , 22 , 4 , 423 – 430 , 2019 . doi: https://doi.org/ 10.1016/j.jval.2019.01.008 .
-
Ramola , M.
,
Yadav , V.
,
Jain , R.
,
On the adoption of additive manufacturing in healthcare: a literature review
.
J. Manuf. Technol. Manage.
,
30
,
1
,
48
–
69
, Jan.
2019
. doi:
10.1108/JMTM-03-2018-0094
.
10.1108/JMTM-03-2018-0094 Google Scholar
-
Gubin , A.V.
,
Kuznetsov , V.P.
,
Borzunov , D.Y.
,
Koryukov , A.A.
,
Reznik , A.V.
,
Chevardin , A.Y.
,
Challenges and Perspectives in the Use of Additive Technologies for Making Customized Implants for Traumatology and Orthopedics
.
Biomed. Eng.
,
50
,
4
,
285
–
289
,
2016
. doi:
10.1007/s10527-016-9639-6
.
10.1007/s10527-016-9639-6 Google Scholar
-
Li , J.
,
et al
.,
Hybrid additive manufacturing of 3D electronic systems
.
J. Micromech. Microeng.
,
26
,
10
,
105005
, Aug.
2016
. doi:
10.1088/0960-1317/26/10/105005
.
10.1088/0960-1317/26/10/105005 Google Scholar
-
Korrayi , R.R.
,
Jena , A.
,
Marupalli , B.C.G.
,
Samal , B.B.
,
Varshney , S.K.
,
Kumar , C.S.
,
Four-Dimensional (4D) Microprinting
, in:
Additive Manufacturing with Novel Materials
, pp.
429
–
457
,
John Wiley & Sons, Ltd
,
River Street, Hoboken, USA & Beverly, MA, USA
,
2024
, doi: https://doi.org/
10.1002/9781394198085.ch14
.
10.1002/9781394198085.ch14 Google Scholar
-
Lopera , L.
,
Rodriguez , R.
,
Yakout , M.
,
Elbestawi , M.
,
Emadi , A.
,
Current and Potential Applications of Additive Manufacturing for Power Electronics
.
IEEE Open J. Power Electron.
,
2
,
33
–
42
,
2021
. doi:
10.1109/OJPEL.2021.3052541
.
10.1109/OJPEL.2021.3052541 Google Scholar
-
Kern , J.
,
Additive Manufacturing
, in:
The Digital Transformation of Logistics
, pp.
41
–
60
,
John Wiley & Sons, Ltd
,
Hoboken, New Jersey, USA
,
2021
, doi: https://doi.org/
10.1002/9781119646495.ch4
.
10.1002/9781119646495.ch4 Google Scholar
-
Bogers , M.
,
Hadar , R.
,
Bilberg , A.
,
Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing
.
Technol. Forecast. Soc. Change
,
102
,
225
–
239
,
2016
. doi: https://doi.org/
10.1016/j.techfore.2015.07.024
.
10.1016/j.techfore.2015.07.024 Google Scholar
-
Lacroix , R.
,
Seifert , R.W.
,
Timonina-Farkas , A.
,
Benefiting from additive manufacturing for mass customization across the product life cycle
.
Oper. Res. Perspect.
,
8
,
100201
,
2021
. doi: https://doi.org/
10.1016/j.orp.2021.100201
.
10.1016/j.orp.2021.100201 Google Scholar
- Sun , C. , Wang , Y. , McMurtrey , M.D. , Jerred , N.D. , Liou , F. , Li , J. , Additive manufacturing for energy: A review . Appl. Energy , 282 , 116041 , 2021 . doi: https://doi.org/ 10.1016/j.apenergy.2020.116041 .
-
Verhoef , L.A.
,
Budde , B.W.
,
Chockalingam , C.
,
García Nodar , B.
,
van Wijk , A.J.M.
,
The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach
.
Energy Policy
,
112
,
349
–
360
,
2018
. doi: https://doi.org/
10.1016/j.enpol.2017.10.034
.
10.1016/j.enpol.2017.10.034 Google Scholar
- Delgado Camacho , D. , et al ., Applications of additive manufacturing in the construction industry – A forward-looking review . Autom. Constr. , 89 , 110 – 119 , 2018 . doi: https://doi.org/ 10.1016/j.autcon.2017.12.031 .
- Paolini , A. , Kollmannsberger , S. , Rank , E. , Additive manufacturing in construction: A review on processes, applications, and digital planning methods . Addit. Manuf. , 30 , 100894 , 2019 . doi: https://doi.org/ 10.1016/j.addma.2019.100894 .
- Huang , R. , et al ., Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components . J. Clean. Prod. , 135 , 1559 – 1570 , 2016 . doi: https://doi.org/ 10.1016/j.jclepro.2015.04.109 .
-
Beiderbeck , D.
,
Krüger , H.
,
Minshall , T.
,
The Future of Additive Manufacturing in Sports BT
, in:
21st Century Sports: How Technologies Will Change Sports in the Digital Age
,
S.L. Schmidt
(Ed.), pp.
111
–
132
,
Springer International Publishing
,
Cham
,
2020
, doi:
10.1007/978-3-030-50801-2_7
.
10.1007/978-3-030-50801-2_7 Google Scholar
-
Novak , J. , II
and
Novak , A.R.
,
Is additive manufacturing improving performance in Sports? A systematic review
.
Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol.
,
235
,
3
,
163
–
175
,
2021
. doi:
10.1177/1754337120971521
.
10.1177/1754337120971521 Google Scholar
-
Zhou , K.
,
Liu , T.
,
Zhou , L.
,
Industry 4.0: Towards future industrial opportunities and challenges
, in:
2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
, pp.
2147
–
2152
,
2015
, doi:
10.1109/FSKD.2015.7382284
.
10.1109/FSKD.2015.7382284 Google Scholar
- Tofail , S.A.M. , Koumoulos , E.P. , Bandyopadhyay , A. , Bose , S. , O'Donoghue , L. , Charitidis , C. , Additive manufacturing: scientific and technological challenges, market uptake and opportunities . Mater. Today , 21 , 1 , 22 – 37 , 2018 . doi: https://doi.org/ 10.1016/j.mattod.2017.07.001 .