Tailoring of AM Component Properties via Laser Powder Bed Fusion
Simon Ewald
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorMaximilian Voshage
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorSteffen Hermsen
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorMax Schaukellis
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorPatrick Köhnen
Steel Institute, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorChristian Haase
Steel Institute, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorJohannes Henrich Schleifenbaum
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Fraunhofer Institute for Laser Technology ILT, Aachen, Germany
Search for more papers by this authorSimon Ewald
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorMaximilian Voshage
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorSteffen Hermsen
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorMax Schaukellis
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorPatrick Köhnen
Steel Institute, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorChristian Haase
Steel Institute, RWTH Aachen University, Aachen, Germany
Search for more papers by this authorJohannes Henrich Schleifenbaum
Digital Additive Production, RWTH Aachen University, Aachen, Germany
Fraunhofer Institute for Laser Technology ILT, Aachen, Germany
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
The ongoing globalization and industrialization requires a more and more sustainable usage of the available resources and processes. An increasing interest in new manufacturing methods, such as laser powder bed fusion (LPBF), for flexible production of high complex components can be observed. LPBF is one of many Additive Manufacturing techniques which allow the production of high complex components directly from 3D-CAD models. Component properties can be tailored by means of the three factors LPBF process parameters, material chemistry, and geometrical design. This chapter examines and evaluates the potentials of the LPBF process regarding the production of tailored components experimentally. Increasing preheating temperature during the manufacturing process led to lower cooling rates and therefore larger grain sizes. The chapter also examines the lattice structures to demonstrate the potential improvement of component capabilities due to use of special component geometries.
References
- Rehme, O. (2010). Cellular design for laser freeform fabrication ( 1st ed.). Göttingen: Cuvillier Verlag. ISBN 9783736932739
-
Schleifenbaum, H., Meiners, W., Wissenbach, K., & Hinke, C. (2010). Individualized production by means of high power Selective laser melting. CIRP Journal of Manufacturing Science and Technology, 2, 161–169. doi:10.1016/j.cirpj.2010.03.005
10.1016/j.cirpj.2010.03.005 Google Scholar
- Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23, 1917–1928. doi:10.1007/s11665-014-0958-z
- Meiners, W. (1999). Direktes selektives Laser Sintern einkomponentiger metallischer Werkstoffe (Doctoral dissertation). Ing, Shaker Verlag: Aachen, Germany.
- Tucho, W. M., Lysne, V. H., Austbø, H., Sjolyst-Kverneland, A., & Hansen, V. (2018). Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. Journal of Alloys and Compounds, 740, 910–925. doi:10.1016/j.jallcom.2018.01.098
-
Hovig, E. W., Holm, H. D., & Sørby, K. (2019). Effect of processing parameters on the relative density of AlSi10Mg processed by laser powder bed fusion. In K. Wang, Y. Wang, J. O. Strandhagen, & T. Yu (Eds.), Advanced Manufacturing and Automation VIII (pp. 268–276). Singapore: Springer. ISBN 978-981-13-2374-4
10.1007/978-981-13-2375-1_34 Google Scholar
-
Gu, D. (2015). Laser additive manufacturing of high-performance materials. Berlin: Springer. ISBN 978-3-662-46088-7
10.1007/978-3-662-46089-4 Google Scholar
- Marchese, G., Garmendia Colera, X., Calignano, F., Lorusso, M., Biamino, S., Minetola, P., & Manfredi, D. (2017). Characterization and comparison of Inconel 625 processed by selective laser melting and laser metal deposition. Advanced Engineering Materials, 19, 1600635. doi:10.1002/adem.201600635
-
Ewald, S., Schaukellis, M., Koehnen, P., & Schleifenbaum, J. H. (2019). Laser powder bed fusion of advanced high-strength steels: Modification of deformation mechanisms by increasing stacking fault energy. Berg- und Huettenmaennische Monatshefte, 10, 2. doi:10.1007/s00501-019-0830-4
10.1007/s00501‐019‐0830‐4 Google Scholar
- Liu, Z. H., Zhang, D. Q., Sing, S. L., Chua, C. K., & Loh, L. E. (2014). Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Materials Characterization, 94, 116–125. doi:10.1016/j.matchar.2014.05.001
- Kies, F., Köhnen, P., Wilms, M. B., Brasche, F., Pradeep, K. G., Schwedt, A., … Haase, C. (2018). Design of high-manganese steels for additive manufacturing applications with energy-absorption functionality. Materials & Design, 160, 1250–1264. doi:10.1016/j.matdes.2018.10.051
- Li, W., Chen, X., Yan, L., Zhang, J., Zhang, X., & Liou, F. (2018). Additive manufacturing of a new Fe-Cr-Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation. International Journal of Advanced Manufacturing Technology, 95, 1013–1023. doi:10.1007/s00170-017-1302-1
- Ewald, S., Kies, F., Hermsen, S., Voshage, M., Haase, C., & Schleifenbaum, J. H. (2019). Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion. Materials (Basel), 12. doi:10.3390/ma12101706
- Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorensen, A. E., Lian, J., Greer, J. R., … Carter, W. B. (2011). Ultralight metallic microlattices. Science, 334, 962–965. doi:10.1126/science.1211649
- Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M., DeOtte, J., Duoss, E. B., … Spadaccini, C. M. (2014). Ultralight, ultrastiff mechanical metamaterials. Science, 344, 1373–1377. doi:10.1126/science.1252291
- Yan, C., Hao, L., Hussein, A., & Raymont, D. (2012). Evaluations of cellular lattice structures manufactured using selective laser melting. International Journal of Machine Tools and Manufacture, 62, 32–38. doi:10.1016/j.ijmachtools.2012.06.002
- Haase, C., Bültmann, J., Hof, J., Ziegler, S., Bremen, S., Hinke, C., …Bleck, W. (2017). Exploiting process-related advantages of selective laser melting for the production of high-manganese steel. Materials (Basel), 10(1), 56. doi:10.3390/ma10010056
- Grässel, O., Krüger, L., Frommeyer, G., & Meyer, L. W. (2000). High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development – Properties – Application. International Journal of Plasticity, 16, 1391–1409. doi:10.1016/S0749-6419(00)00015-2
-
Gottstein, G. (2014). Materialwissenschaft und Werkstofftechnik. Berlin, Heidelberg: Springer. ISBN 978-3-642-36602-4
10.1007/978-3-642-36603-1 Google Scholar
- Twardowski, R. Mikrostrukturelle Beschreibung von Verformung und Schädigung hochmanganhaltiger Stähle mit TRIP- und TWIP-Effekt. Aachen: Publikationsserver der RWTH Aachen University.
- Merkt, S., Hinke, C., Bültmann, J., Brandt, M., & Xie, Y. M. (2015). Mechanical response of TiAl6V4 lattice structures manufactured by selective laser melting in quasistatic and dynamic compression tests. Journal of Laser Applications, 27, S17006. doi:10.2351/1.4898835
- Bachmann, F., Hielscher, R., & Schaeben, H. (2011). Grain detection from 2d and 3d EBSD data--specification of the MTEX algorithm. Ultramicroscopy, 111, 1720–1733. doi:10.1016/j.ultramic.2011.08.002
- Nolze, G., & Hielscher, R. (2016). Orientations: Perfectly colored. Journal of Applied Crystallography, 49, 1786–1802. doi:10.1107/s1600576716012942
- Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 364, 15–30. doi:10.1098/rsta.2005.1678
- Tancogne-Dejean, T., Spierings, A. B., & Mohr, D. (2016). Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Materialia, 116, 14–28. doi:10.1016/j.actamat.2016.05.054
- Köhnen, P., Haase, C., Bültmann, J., Ziegler, S., Schleifenbaum, J. H., & Bleck, W. (2018). Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Materials & Design, 145, 205–217. doi:10.1016/j.matdes.2018.02.062
-
Saewe, J., Gayer, C., Vogelpoth, A., & Schleifenbaum, J. H. (2019). Feasability investigation for laser powder bed fusion of high-speed steel AISI M50 with base preheating system. Berg- und Huettenmaennische Monatshefte, 5, 359. doi:10.1007/s00501-019-0828-y
10.1007/s00501‐019‐0828‐y Google Scholar
- W. Bleck (Ed.) (2012). Spezielle Werkstoffkunde der Stähle für Studium und Praxis ( 2nd ed.). Mainz, Aachen: RWTH Aachen University. ISBN 3-8107-0060-6
- Haase, C. Texture and microstructure evolution during deformation and annealing of high-manganese TWIP steels. Aachen: RWTH Aachen.