Additive Manufacturing of Functional Metals
Venkata Karthik Nadimpalli
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
Search for more papers by this authorDavid Bue Pedersen
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
Search for more papers by this authorVenkata Karthik Nadimpalli
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
Search for more papers by this authorDavid Bue Pedersen
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
Additive manufacturing (AM) technologies comprise a family of manufacturing methods that colloquially are known by the common appellation of “3D Printing.” AM has created a strong linkage between digital and physical manufacturing, thus nourishing by its nature, a wider trend, digitization, and the automation of the manufacturing industry. This chapter presents an overview of the gross elements for a generic AM process. Industrial applications of functional metal. AM components can be found across various sectors including nuclear power, oil & gas, turbine components, wind & tidal energy, fuel cell components, and electromagnetic energy. AM lends increased design freedom for the manufacturing of unique functional geometries. AM processes on account of being a selective consolidation based manufacturing processes offer tremendous flexibility in functional material gradients. Powder bed fusion refers to a class of AM processes. Solid-state AM is a class of processes that use friction and diffusion-based mechanisms to produce mechanical bonding without melting.
References
-
Chua, C. K., & Leong, K. F. (2017). 3D Printing and Additive Manufacturing: Principles and Applications. The 5th Edition of Rapid Prototyping: Principles and Applications. Singapore: World Scientific Publishing Company. doi:10.1142/10200
10.1142/10200 Google Scholar
- Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive Manufacturing Technologies: Rapid Prototyping To Direct Digital Manufacturing. New York: Springer. doi:10.1007/978-1-4419-1120-9
- Wohlers Report (2020). Analysis. Trends. Forecasts. Feel the pulse of the 3D printing industry. Wohlers Associates.
- Hofmann, D. C., Kolodziejska, J., Roberts, S., Otis, R., Dillon, R. P., Suh, J. O., … Borgonia, J. P. (2014). Compositionally graded metals: A new frontier of additive manufacturing. Journal of Materials Research, 29(17), 1899–1910. doi:10.1557/jmr.2014.208
- Sobczak, J. J. J., & Drenchev, L. (2013). Metallic functionally graded materials: A specific class of advanced composites. Journal of Materials Science and Technology, 29(4), 297–316. doi:10.1016/j.jmst.2013.02.006
- MacDonald, E., & Wicker, R. (2016). Multiprocess 3D printing for increasing component functionality. Science, 353(6307), aaf2093-1–aaf2093-8. doi:10.1126/science.aaf2093
- GE Additive. (n.d.). New manufacturing milestone: 30,000 additive fuel nozzles. Retrieved from https://www.ge.com/additive/stories/new-manufacturing-milestone-30000-additive-fuel-nozzles
- Siemens Global. (n.d.). Additive manufacturing. Energy topics. Retrieved from https://new.siemens.com/global/en/products/energy/topics/additive-manufacturing.html
- Oerlikon AM. (n.d.). AM in Power Generation. Energy Market. Retrieved from https://www.oerlikon.com/am/en/markets/power-generationenergy/
- Biome Renewables. (n.d.). PowerCone. Retrieved from https://www.biome-renewables.com/powercone
- aidro. (n.d.). Additive manufacturing in hydraulics. Retrieved from https://www.aidro.it/3d-metal-printing.html
- ORNL. (n.d.). 3D-printed nuclear reactor promises faster, more economical path to nuclear energy. Retrieved from https://www.ornl.gov/news/3d-printed-nuclear-reactor-promises-faster-more-economical-path-nuclear-energy
- OPTISYS. (n.d.). High bandwidth antennas. Retrieved from https://www.optisys.tech/blog/tag/Additive-Manufacturing
- EOS GmbH. (n.d.). Manufacture heat exchangers additively. Retrieved from https://www.eos.info/en/3d-printing-examples-applications/production-and-industry/electronical-components/heatexchanger-additive-manufacturing
- Hegab, H. A. (2016). Design for additive manufacturing of composite materials and potential alloys: A review. Manufacturing Review, 3, 1–17. doi:10.1051/mfreview/2016010
- Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied Materials Today, 5, 223–245. doi:10.1016/j.apmt.2016.10.001
- Loh, G. H., Pei, E., Harrison, D., & Monzón, M. D. (2018). An overview of functionally graded additive manufacturing. Additive Manufacturing, 23, 34–44. doi:10.1016/j.addma.2018.06.023
- Rafiee, M., Farahani, R. D., & Therriault, D. (2020). Multi-material 3D and 4D printing: A survey. Advanced Science, 7(12), 1902307-1–1902307-26. doi:10.1002/advs.201902307
- Pascale, D., & Simion, I. (2018). Multi-material 3D printer extruder concept. Journal of Industrial Design and Engineering Graphics, 13(1), 25–28.
- Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering R: Reports, 129, 1–16.
- Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., … Wicker, R. B. (2012). Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science and Technology, 28(1), 1–14. doi:10.1016/S1005-0302(12)60016-4
- DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., … Zhang, W. (2018). Additive manufacturing of metallic components: Process, structure and properties. Progress in Materials Science, 92, 112–224. doi:10.1016/j.pmatsci.2017.10.001
- Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2012). Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews, 57(3), 133–164. doi:10.1179/1743280411Y.0000000014
- Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15–30. doi:10.1098/rsta.2005.1678
- Simone, A. E., & Gibson, L. J. (1998). The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Materialia, 46(11), 3929–3935. doi:10.1016/S1359-6454(98)00072-X
- Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., Ashcroft, I. A., Wildman, R. D., & Hague, R. J. M. (2016). A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering A, 670, 264–274. doi:10.1016/j.msea.2016.06.013
- Choy, S. Y. S. Y., Sun, C. N. C.-N., Leong, K. F. K. F., & Wei, J. (2017). Compressive properties of functionally graded lattice structures manufactured by selective laser melting. Materials and Design, 131(June), 112–120. doi:10.1016/j.matdes.2017.06.006
- Li, S., Hassanin, H., Attallah, M. M., Adkins, N. J. E., & Essa, K. (2016). The development of TiNi-based negative Poisson's ratio structure using selective laser melting. Acta Materialia, 105, 75–83. doi:10.1016/j.actamat.2015.12.017
- Tan, C., Li, S., Essa, K., Jamshidi, P., Zhou, K., Ma, W., & Attallah, M. M. M. M. (2019). Laser powder bed fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. International Journal of Machine Tools and Manufacture, 141(January), 19–29. doi:10.1016/j.ijmachtools.2019.04.002
- Carluccio, D., Demir, A. G., Bermingham, M. J., & Dargusch, M. S. (2020). Challenges and opportunities in the selective laser melting of biodegradable metals for load-bearing bone scaffold applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51, 3311–3334. doi:10.1007/s11661-020-05796-z
- Hazlehurst, K. B., Wang, C. J., & Stanford, M. (2014). An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Materials and Design, 60, 177–183. doi:10.1016/j.matdes.2014.03.068
- Ataee, A., Li, Y., Fraser, D., Song, G., & Wen, C. (2018). Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Materials and Design, 137, 345–354. doi:10.1016/j.matdes.2017.10.040
- Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61–73. doi:10.1016/j.jmbbm.2015.06.024
- Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials and Design, 182, 108021. doi:10.1016/j.matdes.2019.108021
- Zhang, X.-Y., Fang, G., Leeflang, S., Zadpoor, A. A., & Zhou, J. (2019). Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomaterialia, 84, 437–452. doi:10.1016/j.actbio.2018.12.013
- Nadimpalli, V. K., Dahmen, T., Valente, E. H., Mohanty, S., & Pedersen, D. B. (2019, June 3–7). Multi-material additive manufacturing of steels using laser powder bed fusion. Proceedings of the 19th International Conference and Exhibition European Society for Precision Engineering and Nanotechnology, Conference, EUSPEN 2019, Bilbao.
- Chen, J., Yang, Y., Song, C., Zhang, M., Wu, S., & Wang, D. (2019). Interfacial microstructure and mechanical properties of 316L /CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Materials Science and Engineering A, 752, 75–85. doi:10.1016/j.msea.2019.02.097
- Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, L. E., & Wicker, R. B. (2016). Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology. Materials and Design, 94, 17–27. doi:10.1016/j.matdes.2016.01.041
- AlMangour, B., Grzesiak, D., & Yang, J. M. (2017). In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting. Journal of Alloys and Compounds, 706, 409–418. doi:10.1016/j.jallcom.2017.01.149
- Han, C., Li, Y., Wang, Q., Cai, D., Wei, Q., Yang, L., … Shi, Y. (2018). Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi-continuous ratios fabricated by SLM: Material interface and fracture toughness. Materials and Design, 141, 256–266. doi:10.1016/j.matdes.2017.12.037
- Kun, C., Beibei, H. H., Wenheng, W., & Cailin, Z. (2017). The formation mechanism of TiC reinforcement and improved tensile strength in additive manufactured Ti matrix nanocomposite. Vacuum, 143, 23–27. doi:10.1016/j.vacuum.2017.05.029
- Xia, M., Liu, A., Hou, Z., Li, N., Chen, Z., & Ding, H. (2017). Microstructure growth behavior and its evolution mechanism during laser additive manufacture of in-situ reinforced (TiB+TiC)/Ti composite. Journal of Alloys and Compounds, 728, 436–444. doi:10.1016/j.jallcom.2017.09.033
- Niendorf, T., Leuders, S., Riemer, A., Brenne, F., Tröster, T., Richard, H. A., & Schwarze, D. (2014). Functionally graded alloys obtained by additive manufacturing. Advanced Engineering Materials, 16(7), 857–861. doi:10.1002/adem.201300579
- Koptyug, A., Popov, V. V., Botero Vega, C. A., Jiménez-Piqué, E., Katz-Demyanetz, A., Rännar, L. E., & Bäckström, M. (2020). Compositionally-tailored steel-based materials manufactured by electron beam melting using blended pre-alloyed powders. Materials Science and Engineering A, 771(July 2019), 138587-1–138587-11. doi:10.1016/j.msea.2019.138587
- Biondani, F. G., Bissacco, G., Mohanty, S., Tang, P. T., & Hansen, H. N. (2020). Multi-metal additive manufacturing process chain for optical quality mold generation. Journal of Materials Processing Technology, 277, 116451.
- Anstaett, C., Seidel, C., & Reinhart, G. (2017). Fabrication of 3D multi-material parts using laser-based powder bed fusion. Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium.
- Aerosint. (n.d.). Selective powder deposition for AM. Retrieved from https://aerosint.com/
-
Demir, A. G., & Previtali, B. (2017). Multi-material selective laser melting of Fe/Al-12Si components. Manufacturing Letters, 11, 8–11.
10.1016/j.mfglet.2017.01.002 Google Scholar
- Wei, C., Li, L., Zhang, X., & Chueh, Y.-H. (2018). 3D printing of multiple metallic materials via modified selective laser melting. CIRP Annals, 67(1), 245–248.
- Bodner, S. C., van de Vorst, L. T. G., Zalesak, J., Todt, J., Keckes, J. F., Maier-Kiener, V., … Keckes, J. (2020). Inconel-steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients. Additive Manufacturing, 32, 101027-1–101027-11. doi:10.1016/j.addma.2019.101027
- Wang, J., Pan, Z., Ma, Y., Lu, Y., Shen, C., Cuiuri, D., & Li, H. (2018). Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour. Materials Science and Engineering A, 734, 110–119. doi:10.1016/j.msea.2018.07.097
- FORCE Technology. (n.d.). Large-scale 3D printing facility. Retrieved from https://forcetechnology.com/en/all-industry-facilities/large-scale-3d-printing-facility
-
Stavropoulos, P., Foteinopoulos, P., Papacharalampopoulos, A., & Bikas, H. (2018). Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution. International Journal of Lightweight Materials and Manufacture, 1(3), 157–168. doi:10.1016/j.ijlmm.2018.07.002
10.1016/j.ijlmm.2018.07.002 Google Scholar
- Lundin, C. D. (1982). Dissimilar metal welds: Transition joints literature review. Welding Journal (Miami, Fla), 61(2), 58-s–63-s.
- Chen, N., Khan, H. A., Wan, Z., Lippert, J., Sun, H., Shang, S.-L., … Li, J. (2020). Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625. Additive Manufacturing, 32, 101037-1–101037-16. doi:10.1016/j.addma.2020.101037
- Anderson, R., Terrell, J., Schneider, J., Thompson, S., & Gradl, P. (2019). Characteristics of bi-metallic interfaces formed during direct energy deposition additive manufacturing processing. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 50(4), 1921–1930. doi:10.1007/s11663-019-01612-1
- Li, P., Gong, Y., Xu, Y., Qi, Y., Sun, Y., & Zhang, H. (2019). Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties. Archives of Civil and Mechanical Engineering, 19(3), 820–831. doi:10.1016/j.acme.2019.03.002
- Shang, C., Wang, C., Xu, G., Li, C., & You, J. (2019). Laser additive manufacturing of TA15: Inconel 718 bimetallic structure via Nb/Cu multi-interlayer. Vacuum, 169(July), 108888. doi:10.1016/j.vacuum.2019.108888
- Savitha, U., Srinivas, V., Jagan Reddy, G., Gokhale, A. A., & Sundararaman, M. (2018). Additive laser deposition of YSZ on Ni base superalloy for thermal barrier application. Surface and Coatings Technology, 354, 257–267. doi:10.1016/j.surfcoat.2018.08.089
- Zuback, J. S., Palmer, T. A., & DebRoy, T. (2019). Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys. Journal of Alloys and Compounds, 770, 995–1003. doi:10.1016/j.jallcom.2018.08.197
- Lu, Y., Huang, Y., & Wu, J. (2018). Laser additive manufacturing of structural-graded bulk metallic glass. Journal of Alloys and Compounds, 766, 506–510. doi:10.1016/j.jallcom.2018.06.259
- Liu, Y., Liang, C., Liu, W., Ma, Y., Liu, C., & Zhang, C. (2018). Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. Journal of Alloys and Compounds, 763, 376–383. doi:10.1016/j.jallcom.2018.05.289
- Bobbio, L. D., Otis, R. A., Borgonia, J. P., Dillon, R. P., Shapiro, A. A., Liu, Z.-K., & Beese, A. M. (2017). Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations. Acta Materialia, 127, 133–142. doi:10.1016/j.actamat.2016.12.070
- Nartu, M. S. K. K. Y., Mantri, S. A., Pantawane, M. V., Ho, Y.-H., McWilliams, B., Cho, K., … Banerjee, R. (2020). In situ reactions during direct laser deposition of Ti-B<inf>4</inf>C composites. Scripta Materialia, 183, 28–32. doi:10.1016/j.scriptamat.2020.03.021
- Traxel, K. D., & Bandyopadhyay, A. (2020). Naturally architected microstructures in structural materials via additive manufacturing. Additive Manufacturing, 34, 101243-1–101243-14. doi:10.1016/j.addma.2020.101243
- Lanfant, B., Bär, F., Mohanta, A., & Leparoux, M. (2019). Fabrication of metal matrix composite by laser metal deposition-a new process approach by direct dry injection of nanopowders. Materials, 12(21), 3584-1–3584-16. doi:10.3390/ma12213584
- Hu, Y., Cong, W., Wang, X., Li, Y., Ning, F., & Wang, H. (2018). Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: Effects on strengthening and toughening. Composites Part B: Engineering, 133, 91–100. doi:10.1016/j.compositesb.2017.09.019
- Li, F., Gao, Z., Li, L., & Chen, Y. (2016). Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition. Optics and Laser Technology, 77, 134–143. doi:10.1016/j.optlastec.2015.09.018
- Hofmann, D. C., Roberts, S., Otis, R., Kolodziejska, J., Dillon, R. P., Suh, J.-O., … Borgonia, J.-P. (2014). Developing gradient metal alloys through radial deposition additive manufacturing. Scientific Reports, 4, 5357-1–5357-8. doi:10.1038/srep05357
- Heer, B., & Bandyopadhyay, A. (2018). Compositionally graded magnetic-nonmagnetic bimetallic structure using laser engineered net shaping. Materials Letters, 216, 16–19. doi:10.1016/j.matlet.2017.12.129
-
Akinlabi, E. T., & Akinlabi, S. A. (2014). Friction stir welding of dissimilar metals. In M.-K. Besharati-Givi & P. Asadi (Eds.), Advances in Friction-Stir Welding and Processing. Cambridge: Woodhead Publishing. doi:10.1533/9780857094551.241
10.1533/9780857094551.241 Google Scholar
- Domack, M. S., & Baughman, J. M. (2005). Development of nickel-titanium graded composition components. Rapid Prototyping Journal, 11(1), 41–51. doi:10.1108/13552540510573383
- Dilip, J. J. S., & Ram, G. D. J. (2013). Microstructure evolution in aluminum alloy AA 2014 during multi-layer friction deposition. Materials Characterization, 86, 146–151.
- Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., & Lupoi, R. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650.
- Yin, S., Yan, X., Chen, C., Jenkins, R., Liu, M., & Lupoi, R. (2018). Hybrid additive manufacturing of Al-Ti6Al4V functionally graded materials with selective laser melting and cold spraying. Journal of Materials Processing Technology, 255, 650–655. doi:10.1016/j.jmatprotec.2018.01.015
-
Nadimpalli, V. K., & Nagy, P. B. (2018). Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing. AIP Conference Proceedings, 1949, 020005-1–020005-9. doi:10.1063/1.5031502
10.1063/1.5031502 Google Scholar
- Nadimpalli, V. K., Yang, L., & Nagy, P. B. (2018). In-situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE. NDT and E International, 93, 117–130. doi:10.1016/j.ndteint.2017.10.004
- Sridharan, N., Wolcott, P., Dapino, M., & Babu, S. S. S. S. (2017). Microstructure and mechanical property characterisation of aluminium–steel joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 22(5), 373–380. doi:10.1080/13621718.2016.1249644
- Wolcott, P. J. J., Sridharan, N., Babu, S. S. S., Miriyev, A., Frage, N., & Dapino, M. J. J. (2016). Characterisation of Al–Ti dissimilar material joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 21(2), 114–123. doi:10.1179/1362171815Y.0000000072
- Stucker, B. E., Obielodan, J. O., Ceylan, A., & Murr, L. E. (2010). Multi-material bonding in ultrasonic consolidation. Rapid Prototyping Journal, 16(3), 180–188. doi:10.1108/13552541011034843
- Kumar, S., & Kruth, J.-P. (2010). Composites by rapid prototyping technology. Materials and Design, 31(2), 850–856. doi:10.1016/j.matdes.2009.07.045
- Guo, H., Gingerich, M. B., Headings, L. M., Hahnlen, R., & Dapino, M. J. (2019). Joining of carbon fiber and aluminum using ultrasonic additive manufacturing (UAM). Composite Structures, 208, 180–188. doi:10.1016/j.compstruct.2018.10.004
- Yang, Y., Janaki Ram, G. D. D., & Stucker, B. E. E. (2009). Bond formation and fiber embedment during ultrasonic consolidation. Journal of Materials Processing Technology, 209(10), 4915–4924. doi:10.1016/j.jmatprotec.2009.01.014
- Obielodan, J., & Stucker, B. (2014). A fabrication methodology for dual-material engineering structures using ultrasonic additive manufacturing. International Journal of Advanced Manufacturing Technology, 70(1–4), 277–284. doi:10.1007/s00170-013-5266-5
- Dapino, M. J. (2014). Smart structure integration through ultrasonic additive manufacturing. ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014, 2. 10.1115/SMASIS20147710.
- Hehr, A., Wenning, J., Terrani, K., Babu, S. S., & Norfolk, M. (2017). Five-axis ultrasonic additive manufacturing for nuclear component manufacture. JOM, 69(3), 485–490. doi:10.1007/s11837-016-2205-6
- Petrie, C. M. C. M., Sridharan, N., Subramanian, M., Hehr, A., Norfolk, M., & Sheridan, J. (2019). Embedded metallized optical fibers for high temperature applications. Smart Materials and Structures, 28(5), 055012-1–055012-33. doi:10.1088/1361-665X/ab0b4e
- Bournias-Varotsis, A., Friel, R. J., Harris, R. A., & Engstrøm, D. S. (2018). Ultrasonic Additive Manufacturing as a form-then-bond process for embedding electronic circuitry into a metal matrix. Journal of Manufacturing Processes, 32, 664–675. doi:10.1016/j.jmapro.2018.03.027
- Sriraman, M. R., Babu, S. S., & Short, M. (2010). Bonding characteristics during very high power ultrasonic additive manufacturing of copper. Scripta Materialia, 62(8), 560–563. doi:10.1016/j.scriptamat.2009.12.040
- Janaki Ram, G. D., Yang, Y., & Stucker, B. E. (2006). Effect of process parameters on bond formation during ultrasonic consolidation of aluminum alloy 3003. Journal of Manufacturing Systems, 25(3), 221–238. doi:10.1016/S0278-6125(07)80011-2
- Fabrisonic. (n.d.). Embedding sensors and electronics. Retrieved from https://fabrisonic.com/applications/
- Gonzalez-Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., & Holzer, C. (2018). Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives. Materials, 11(5), 840-1–840-36. doi:10.3390/ma11050840
-
Pedersen, D. B., Andersen, S. A., & Hansen, H. N. (2019). Measurements in Additive Manufacturing (pp. 369–397). USA: Springer. doi:10.1007/978-981-10-4938-5_13
10.1007/978‐981‐10‐4938‐5_13 Google Scholar
- Holo Additive Manufacturing. (n.d.). PureForm Technology. Retrieved from https://holoam.com/technology/
- Salcedo, E., Baek, D., Berndt, A., & Ryu, J. E. (2018). Simulation and validation of three dimension functionally graded materials by material jetting. Additive Manufacturing, 22, 351–359. doi:10.1016/j.addma.2018.05.027
- Sufiiarov, V., Polozov, I., Kantykov, A., & Khaidorov, A. (2020). Binder jetting additive manufacturing of 420 stainless steel: Densification during sintering and effect of heat treatment on microstructure and hardness. Materials Today: Proceedings.
- Thompson, Y., Gonzalez-Gutierrez, J., Kukla, C., & Felfer, P. (2019). Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Additive Manufacturing, 30, 100861.
- Larsen, U. D., Signund, O., & Bouwsta, S. (1997). Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of Microelectromechanical Systems, 6(2), 99–106.
- Takezawa, A., Kobashi, M., & Kitamura, M. (2015). Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing. APL Materials, 3(7), 76103.
- Andersen, P. R., Henríquez, V. C., & Aage, N. (2019). Shape optimization of micro-acoustic devices including viscous and thermal losses. Journal of Sound and Vibration, 447, 120–136.
- Wu, J., Aage, N., Westermann, R., & Sigmund, O. (2017). Infill optimization for additive manufacturing: Approaching bone-like porous structures. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1127–1140.
- Martin, J. J., Fiore, B. E., & Erb, R. M. (2015). Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Communications, 6, 8641-1–8641-7. doi:10.1038/ncomms9641
- Abel, J., Scheithauer, U., Janics, T., Hampel, S., Cano, S., Müller-Köhn, A., … Moritz, T. (2019). Fused Filament Fabrication (FFF) of metal-ceramic components. JoVE (Journal of Visualized Experiments), 143, e57693.