Physical Layer Techniques for 5G Wireless Security
Batu K. Chalise
Department of Electrical and Computer Engineering, New York Institute of Technology, OldWestbury, NY, USA
Search for more papers by this authorHimal A. Suraweera
Department of Electrical and Electronic Engineering, University of Peradeniya, Peradeniya, Sri Lanka
Search for more papers by this authorGan Zheng
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, United Kingdom
Search for more papers by this authorRisto Wichman
Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
Search for more papers by this authorBatu K. Chalise
Department of Electrical and Computer Engineering, New York Institute of Technology, OldWestbury, NY, USA
Search for more papers by this authorHimal A. Suraweera
Department of Electrical and Electronic Engineering, University of Peradeniya, Peradeniya, Sri Lanka
Search for more papers by this authorGan Zheng
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, United Kingdom
Search for more papers by this authorRisto Wichman
Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
Search for more papers by this authorAbstract
Wireless communications and cellular networks are vulnerable to various security threats due to several reasons. Physical layer techniques and technologies, such as massive multiple-input multiple-output (MIMO), millimeter communications, cognitive radio, and full-duplex wireless, can be easily integrated to implement comprehensive 5G wireless security solutions. This chapter discusses physical layer security techniques for 5G wireless communications. It introduces full-duplex communications and transceiver architecture, and discusses prior art on full-duplex physical layer security schemes reported for the bidirectional, base station, and relay topologies. The chapter considers the optimum beamforming designs for full duplex wireless security solutions for multiantenna bidirectional and relay communication systems. It emphasizes future challenges and open issues for the implementation of full duplex secure transmissions in 5G systems. Due to simultaneous transmissions, full-duplex operation in cellular networks can introduce increased levels of co-channel interference.
References
- Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security: technical challenges, recent advances, and future trends,” Proc. IEEE, vol. 104, no. 9, pp. 1727–1765, 2016.
- Ericsson, “5G security – scenarios and solutions,” June 2015. Available at https://www.ericsson.com/assets/local/publications/white-papers/wp-5g-security.pdf.
- J. Cao, M. Ma, H. Li, Y. Zhang, and Z. Luo, “A survey on security aspects for LTE and LTE-A networks,” IEEE Commun. Surv. and Tutor., vol. 16, no. 1, pp. 283–302, 2014.
-
J. G. Andrews,
S. Buzzi,
W. Choi,
S. V. Hanly,
A. Lozano,
A. C. K. Soong, and
J. C. Zhang,
“What will 5G be?,”
IEEE J. Select. Areas Commun.,
vol. 32,
no. 6,
pp.
1065–1082,
2014.
10.1109/JSAC.2014.2328098 Google Scholar
- Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu, “Security vulnerabilities of Internet of Things: a case study of the smart plug system,” IEEE Internet Things J., vol. 4, no. 6, pp. 1899–1909, 2017.
- N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, and M. D. Renzo, “Safeguarding 5G wireless communication networks using physical layer security,” IEEE Commun. Mag., vol. 53, no. 4, pp. 20–27, 2015.
-
M. Bloch and
J. Barros,
Physical-Layer Security: From Information Theory to Security Engineering.
New York, NY:
Cambridge University Press,
2011.
10.1017/CBO9780511977985 Google Scholar
-
C. E. Shannon,
“Communication theory of secrecy systems,”
Bell Syst. Tech. J.,
vol. 28,
no. 4,
pp.
656–715,
1949.
10.1002/j.1538-7305.1949.tb00928.x Google Scholar
- A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, 1975.
- I. Csiszar and J. Korner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, 1978.
- H. V. Poor and R. F. Schaefer, “'Wireless physical layer security,” Proc. Natl. Acad. Sci. USA, vol. 114, no. 1, pp. 19–26, 2017.
- S. K. Leung-Yan-Cheong and M. E. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, 1978.
- M. Dohler, R. W. Heath, A. Lozano, C. B. Papadias, and R. A. Valenzuela, “Is the PHY layer dead?,” IEEE Commun. Mag., vol. 49, no. 4, pp. 159–165, 2011.
- J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “ Achieving single channel, full duplex wireless communication,” in Proc. 16th Annual International Conference on Mobile Computing and Networking (ACM MobiCom' 10), Chicago, IL, Sept. 2010, pp. 1–12.
- International Telecommunications Union, “IMT traffic estimates for the years 2020 to 2030,” 2015. Available at https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf
- M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characterization of full-duplex wireless systems,” IEEE Trans. Wirel. Commun., vol. 11, no. 12, pp. 4296–4307, 2012.
- A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: challenges and opportunities,” IEEE J. Select. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.
- G. Zheng, I. Krikidis, J. Li, A. P. Petropulu, and B. Ottersten, “Improving physical layer secrecy using full-duplex jamming receivers,” IEEE Trans. Signal Process., vol. 61, no. 20, pp. 4962–4974, 2013.
- D. Korpi, T. Riihonen, V. Syrjälä, L. Anttila, M. Valkama, and R. Wichman, “Full-duplex transceiver system calculations: analysis of ADC and linearity challenges,” IEEE Trans. Wirel. Commun., vol. 13, no. 7, pp. 3821–3836, 2014.
- E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Trans. Wirel. Commun., vol. 13, no. 2, pp. 680–694, 2014.
- M. Heino, D. Korpi, T. Huusari, E. Antonio-Rodriguez, S. Venkatasubramanian, T. Riihonen, L. Anttila, C. Icheln, K. Haneda, R. Wichman, and M. Valkama, “Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays,” IEEE Commun. Mag., vol. 53, no. 5, pp. 91–101, 2015.
- E. Aryafar, M. A. Khojastepour, K. Sundaresan, S. Rangarajan, and M. Chiang, “ MIDU: enabling MIMO full duplex,” in Proc. 18th Annual International Conference on Mobile Computing and Networking (ACM MobiCom' 12), Istanbul, Turkey, Sept. 2012, pp. 257–268.
- D. Bharadia, E. McMilin, and S. Katti, “ Full duplex radios,” in Proc. ACM SIGCOMM' 13, Hong Kong, China, Aug. 2013, pp. 375–386.
- T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex MIMO relays,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5983–5993, 2011.
- H. Q. Ngo, H. A. Suraweera, M. Matthaiou, and E. G. Larsson, “Multipair full-duplex relaying with massive arrays and linear processing,” IEEE J. Select. Areas Commun., vol. 32, no. 9, pp. 1721–1737, 2014.
- S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wirel. Commun., vol. 7, no. 6, pp. 2180–2189, 2008.
- A. L. Swindlehurst, “ Fixed SINR solutions for the MIMO wiretap channel,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, Apr. 2009, pp. 2437–2440.
- T. Riihonen, S. Werner, and R. Wichman, “Hybrid full-duplex/half-duplex relaying with transmit power adaptation,” IEEE Trans. Wirel. Commun., vol. 10, no. 9, pp. 3074–3085, 2011.
- A. Mukherjee and A. L. Swindlehurst, “ A full-duplex active eavesdropper in MIMO wiretap channels: construction and countermeasures,” in Proc. Asilomar Conference on Signal, Systems and Computers, Pacific Grove, CA, Nov. 2011, pp. 265–269.
- Y. Zhou, Z. Z. Xiang, Y. Zhu, and Z. Xue, “Application of full-duplex wireless technique into secure MIMO communication: achievable secrecy rate based optimization,” IEEE Signal Process. Lett., vol. 21, no. 7, pp. 804–808, 2014.
- O. Cepheli, S. Tedik, and G. Karabulut Kurt, “A high data rate wireless communication system with improved secrecy: full duplex beamforming,” IEEE Commun. Lett., vol. 18, no. 6, pp. 1075–1078, 2014.
- L. Li, Z. Chen, D. Zhang, and J. Fang, “A full-duplex Bob in the MIMO Gaussian wiretap channel: scheme and performance,” IEEE Signal Process. Lett., vol. 23, no. 1, pp. 107–111, 2016.
- T. X. Zheng, H. M. Wang, Q. Yang, and M. H. Lee, “Safeguarding decentralized wireless networks using full-duplex jamming receivers,” IEEE Trans. Wirel. Commun., vol. 16, no. 1, pp. 278–292, 2017.
- T. X. Zheng, H. M. Wang, J. Yuan, Z. Han, and M. H. Lee, “Physical layer security in wireless ad hoc networks under a hybrid full-/half-duplex receiver deployment strategy,” IEEE Trans. Wirel. Commun., vol. 16, no. 6, pp. 3827–3839, 2017.
- B. Akgun, O. O. Koyluoglu, and M. Krunz, “Exploiting full-duplex receivers for achieving secret communications in multiuser MISO networks,” IEEE Trans. Commun., vol. 65, no. 2, pp. 956–968, 2017.
- R. Feng, Q. Li, Q. Zhang, and J. Qin, “Robust secure beamforming in MISO full-duplex two-way secure communications,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 408–414, 2016.
- T. Zhang, Y. Cai, Y. Huang, T. Q. Duong, and W. Yang, “Secure full-duplex spectrum-sharing wiretap networks with different antenna reception schemes,” IEEE Trans. Commun., vol. 65, no. 1, pp. 335–346, 2017.
- F. Zhu, F. Gao, M. Yao, and H. Zou, “Joint information-and jamming-beamforming for physical layer security with full duplex base station,” IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6391–6401, 2014.
- F. Zhu, F. Gao, T. Zhang, K. Sun, and M. Yao, “Physical-layer security for full duplex communications with self-interference mitigation,” IEEE Trans. Wirel. Commun., vol. 15, no. 1, pp. 329–340, 2016.
- Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Multi-objective optimization for robust power efficient and secure full-duplex wireless communication systems,” IEEE Trans. Wirel. Commun., vol. 15, no. 8, pp. 5511–5526, 2016.
- Y. Wang, R. Sun, and X. Wang, “Transceiver design to maximize the weighted sum secrecy rate in full-duplex SWIPT systems,” IEEE Signal Process. Lett., vol. 23, no. 6, pp. 883–887, 2016.
- G. Chen, Y. Gong, P. Xiao, and J. A. Chambers, “Physical layer network security in the full-duplex relay system,” IEEE Trans. Inf. Forensic Secur., vol. 10, no. 3, pp. 574–583, 2015.
- S. Parsaeefard and T. Le-Ngoc, “Improving wireless secrecy rate via full-duplex relay-assisted protocols,” IEEE Trans. Inf. Forensic Secur., vol. 10, no. 10, pp. 2095–2107, 2015.
- J. H. Lee, “Full-duplex relay for enhancing physical layer security in multi-hop relaying systems,” IEEE Commun. Lett., vol. 19, no. 4, pp. 525–528, 2015.
- N. H. Mahmood, I. S. Ansari, P. Mogensen, and K. A. Qaraqe, “ On the ergodic secrecy capacity with full duplex communication,” in Proc. IEEE International Conference on Communication (ICC' 17), Paris, France, May 2017, pp. 1–7.
- H. Alves, G. Brante, R. Demo Souza, D. B. da Costa, and M. Latva-aho, “ On the performance of full-duplex relaying under phy security constraints,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014, pp. 3978–3981.
- A. El Shafie, A. Sultan, and N. Al-Dhahir, “Physical-layer security of a buffer-aided full-duplex relaying system,” IEEE Commun. Lett., vol. 20, no. 9, pp. 1856–1859, 2016.
- H. He, P. Ren, Q. Du, and L. Sun, “ Full-duplex or half-duplex? Hybrid relay selection for physical layer secrecy,” in IEEE Vehicular Technology Conference (VTC Spring), Nanjing, China, May 2016, pp. 1–5.
- Q. Li, W.-K. Ma, and D. Han, “Sum secrecy rate maximization for full-duplex two-way relay networks using Alamouti-based rank-two beamforming,” IEEE J. Select. Top. Signal Process., vol. 10, no. 8, pp. 1359–1374, 2016.
- N. P. Nguyen, C. Kundu, H. Q. Ngo, T. Q. Duong, and B. Canberk, “Secure full-duplex small-cell networks in a spectrum sharing environment,” IEEE Access, vol. 4, pp. 3087–3099, 2016.
- J. Vilela, M. Bloch, J. Barros, and S. W. McLaughlin, “Wireless secrecy regions with friendly jamming,” IEEE Trans. Inf. Forensic Secur., vol. 6, no. 2, pp. 256–266, 2011.
-
S. Boyd and
L. Vandenberghe,
Convex Optimization.
Cambridge, U.K.:
Cambridge University Press,
2004.
10.1017/CBO9780511804441 Google Scholar
- M. Mohammadi, B. K. Chalise, H. A. Suraweera. C. Zhong, G. Zhend, and I. Kirkidis, “Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1769–1785, 2016.
- Y. Huang and S. Zhang, “Complex matrix decomposition and quadratic programming,” Math. Oper. Res., vol. 32, no. 3, pp. 758–768, 2007.
- H. A. Suraweera, I. Krikidis, G. Zheng, C. Yuen, and P. J. Smith, “Low-complexity end-to-end performance optimization in MIMO full-duplex relay systems,” IEEE Trans. Wirel. Commun., vol. 13, no. 2, pp. 913–927, 2014.
- B. K. Chalise, W.-K. Ma, H. A. Suraweera, and Q. Li, “ Secrecy rate maximization in full-duplex multiantenna decode-and-forward relay systems,” in Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2017), Sapporo, Japan, July 2017.
- S. Goyal, P. Liu, S. S. Panwar, R. A. Difazio, R. Yang, and E. Bala, “Full duplex cellular systems: will doubling interference prevent doubling capacity?,” IEEE Commun. Mag., vol. 53, no. 5, pp. 121–127, 2015.
- J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: a review,” IEEE Access, vol. 4, pp. 614–626, 2016.