Motion Estimation and Analysis
Patrick Clarysse
Search for more papers by this authorJérome Pousin
Search for more papers by this authorPatrick Clarysse
Search for more papers by this authorJérome Pousin
Search for more papers by this authorPatrick Clarysse
Search for more papers by this authorDenis Friboulet
Search for more papers by this authorSummary
The estimation and quantification of motion in moving organs, such as heart and lungs, is one of the main objectives under focus in the analysis of medical images concurrently with image segmentation. The problem of motion estimation and analysis has been the subject of many developments in computer vision in application domains initially quite different from medical imaging (analysis of scenes by optical camera). Many methodological developments have been made in medical imaging to ensure geometric matching (or registration) between two images. Generally, the two images represent the same group of organs observed with two different modalities (intermodality registration). The quantitative analysis of cardiac and thoracic kinetics is made possible by accessing data increasingly more resolved in space and time and the imaging development of an arsenal of more or less complex methods adapted to modalities. Motion quantification allows the “normal” dynamic behavior to be characterized.
Bibliography
- ACHESON D.J., Elementary Fluid Dynamics, Clarendon Press, 1990.
10.1093/oso/9780198596608.001.0001 Google Scholar
- ADELSON E.H., BERGEN J.R., “Spatiotemporal energy models for the perception of motion”, Journal of the Optical Society of America A, vol. 2, no. 2, pp. 284–299, 1985.
- ALESSANDRINI M., LIEBGOTT H., FRIBOULET D. et al., “ Simulation of realistic echocardiographic sequences for ground-truth validation of motion estimation”, 2012 IEEE International Conference on Image Processing (ICIP 2012), pp. 2329–2332, 2012.
- ALESSANDRINI M., BASARAB A., LIEBGOTT H. et al., “Myocardial motion estimation from medical images using the monogenic signal”, IEEE Transactions on Image Processing, vol. 22, no. 3, pp. 1084–1095, 2013.
- AMARTU S.C., VESSELLE H.J., “A new approach to study cardiac motion: the optical flow of cine MR images”, Magnetic Resonance in Medicine, vol. 29, no. 1, pp. 59–67, 1993.
- ARTS T., PRINZEN F.W., DELHAAS T. et al., “Mapping displacement and deformation of the heart with local sine-wave modeling”, IEEE Transactions on Medical Imaging, vol. 29, no. 5, pp. 1114–1123, 2010.
- AXEL L., DOUGHERTY L., “MR imaging of motion with spatial modulation of magnetization”, Radiology, vol. 171, no. 3, pp. 841–845, 1989.
- BAKER S., SCHARSTEIN D., LEWIS J.P. et al., “A database and evaluation methodology for optical flow”, International Journal of Computer Vision, vol. 92, no. 1, pp. 1–31, 2011.
- BARRON J.L., FLEET D.J., BEAUCHEMIN S.S., “Performance of opticalflow techniques”, International Journal of Computer Vision, vol. 12, no. 1, pp. 43–77, 1994.
- BASARAB A., CLARYSSE P., ARTS T. et al., “Estimation de mouvement par décalage de phase et maillage déformable appliquée à des séquences cardiaques d'IRM marquées”, Traitement du Signal, vol. 6, pp. 643–663, 2011.
- BESSON O., PICQ M., POUSIN J., “ Computing the time-continuous Optimal Mass Transport Problem without Lagrangian techniques”, ArXiv e-prints, available at http://adsabs.harvard.edu/abs/2010arXiv1009.3420B, September 2010.
- BESSON O., POUSIN J., “Solving a linear conservation law subject to initial and final conditions”, Inverse Problems, vol. 27, no. 11, pp. 115007–115023, 2011.
- BINGHAM S.E., HACHAMOVITCH R., “Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events”, Circulation, vol. 123, no. 14, pp. 1509–1518, 2011.
- BLACK M.J., ANANDAN P., “The robust estimation of multiple motions: parametric and piecewise-smooth flow fields”, Computer Vision and Image Understanding, vol. 63, no. 1, pp. 75–104, 1996.
- BORZI A., ITO K., KUNISH K., “Optimal control formulation for determining optical-flow”, SIAM Journal on Scientific Computing, vol. 24, pp. 818–847, 2002.
- BRENIER Y., BENAMOU J., “A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem”, Numerische Mathematik, vol. 84, pp. 375–393, 2000.
- BRUNO E., PELLERIN D., “Robust motion estimation using spatial Gabor-like filters”, Signal Processing, vol. 82, no. 2, pp. 297–309, 2002.
- BRUHN A., WEICKERT J., FEDDERN C. et al., “Variational optical flow computation in real time”, IEEE Transactions on Image Processing, vol. 14, no. 5, pp. 608–615, 2005.
- BRUHN A., WEICKERT J., SCHNORR C., “Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods”, International Journal of Computer Vision, vol. 61, no. 3, pp. 211–231, 2005.
- CARASSO S., RAKOWSKI H., WITTE K.K. et al., “Left ventricular strain patterns in dilated cardiomyopathy predict response to cardiac resynchronization therapy: timing is not everything”, Journal of the American Society of Echocardiography, vol. 22, no. 3, pp. 242–250, 2009.
- CHEN K., LORENZ D.A., “Image sequence interpolation using optimal control”, Journal of Mathematical Imaging and Vision, vol. 41, pp. 222–238, 2011.
- CHRISTENSEN G.E., JOHNSON H.J., “Consistent image registration”, IEEE Transactions on Medical Imaging, vol. 20, no. 7, pp. 568–582, 2001.
- CLARYSSE P., BASSET C., KHOUAS L. et al., “Two-dimensional spatial and temporal displacement and deformation field fitting from cardiac magnetic resonance tagging”, Medical Image Analysis, vol. 4, pp. 253–268, 2000.
- CLARYSSE P., HAN M., CROISILLE P. et al., “Exploratory analysis of the spatio-temporal deformation of the myocardium during systole from tagged MRI”,IEEE Transactions on Biomedical Engineering, vol. 49, no. 11, pp. 1328–1339, 2002.
- CLARYSSE P., PiCQ M., POUSIN J., “Optimal extended optical flow and statistical constraints: a result of convergence”, Journal of Computational and Applied Mathematics, vol. 235, pp. 1840–1848, 2011.
- CLARYSSE P., Imagerie dynamique cardiaque et thoracique, Hermes Science-Lavoisier, Paris, 2011.
- DE CRAENE M., MARCHESSEAU S., HEYDE B. et al., “3D strain assessment in ultrasound (Straus): a synthetic comparison of five tracking methodologies”,IEEE Transactions on Medical Imaging, vol. 32, no. 9, pp. 1632–1646, 2013.
- DELHAY B., Estimation spatio-temporelle de mouvement et suivi de structures déformables. Application à l'imagerie dynamique du coeur et du thorax, PhD Thesis, INSA, Lyon, 2006.
- DELHAY B., CLARYSSE P., MAGNIN I.E., “ Locally adapted spatio-temporal deformation model for dense motion estimation in periodic cardiac image sequences”, Functional Imaging and Modeling of the Heart (FIMH), Salt Lake City, UT, USA, vol. LNCS 4466, pp. 393–402, 2007.
- DELHAY B., CLARYSSE P., PiCQ M. et al., “Optimal extended optical flow subject to a statistical constraints”, Journal of Computational and Applied Mathematics, vol. 234, pp. 1291–1302, 2010.
- DERICHE R., FAUGERAS O., Les EDP en traitement des images et vision par ordinateur, Research report no. 2697, INRIA, November 1995.
- FELSBERG M., SOMMER G., “The monogenic signal”, IEEE Transactions on Signal Processing, vol. 49, no. 12, pp. 3136–3144, 2001.
- FELSBERG M., “Optical flow estimation from monogenic phase”, Complex Motion, vol. 3417, pp. 1–13, 2007.
- FLEET D.J., JEPSON A.D., “Computation of component image velocity from local phase information”, International Journal of Computer Vision, vol. 5, no. 1, pp. 77–104, 1990.
- FLEET D.J., JEPSON A.D., “Stability of phase information”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 12, pp. 1253–1268, 1993.
- FREEMAN W.T., ADELSON E.H., “The design and use of steerable filters”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891–906, 1991.
- GEMAN S., GEMAN D., “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721–741, 1984.
- GEYER H., CARACCIOLO G., ABE H. et al., “Assessment of myocardial mechanics using Speckle tracking echocardiography: fundamentals and clinical applications”, Journal of the American Society of Echocardiography, vol. 23, no. 4, pp. 351–369, 2010.
- GLATARD T., LARTIZIEN C., GIBAUD B. et al., “A virtual imaging platform for multi-modality medical image simulation”, IEEE Transactions on Medical Imaging, vol. 32, no. 1, pp. 110–118, 2013.
- GORCE J., FRIBOULET D., MAGNIN I., “Estimation of three-dimensional cardiac velocity fields: assessment of a differential method and application to 3D CT data”, Medical Image Analysis, vol. 1, no. 3, pp. 245–261, 1997.
- HABER E., MODERSITZKI J., “Numerical methods for volume preserving image registration”, Inverse Problems, vol. 20, pp. 1621–1638, 2004.
- HAKER S., LEI ZHU Y., TANNENBAUM A., “An image morphing technique based on optimal mass preserving mapping”, IEEE Transactions on Image Processing, vol. 16, pp. 1481–1495, 2007.
- HEEGER D.J., “Model for the extraction of image flow”, Journal of the Optical Society of America A, vol. 4, no. 8, pp. 1455–1471, 1987.
- HOLDEN M., “A review of geometric transformations for nonrigid body registration”, IEEE Transactions on Medical Imaging, vol. 27, no. 1, pp. 111–128, 2008.
- HORN B.K.P., SCHUNCK B., “Determining optical flow”, Artificial Intelligence, vol. 17, pp. 185–203, 1981.
- HOR K.N., GOTTLIEBSON W.M., CARSON C. et al., “Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis”, JACC Cardiovascular Imaging, vol. 3, no. 2, pp. 144–151, 2010.
- KORNPROBST P., DERICHE R., AUBERT G., “Image sequence analysis via partial differential equations”, Journal of Mathematical Imaging and Vision, vol. 11, no. 1, pp. 5–26, 1999.
- LEDESMA-CARBAYO M., KYBIC J., DESCO M. et al., “ Cardiac motion analysis from ultrasound sequences using non-rigid registration”, in W.J. NIESSEN, M.A. VIERGEVER (eds), Medical Image Computing and Computer-Assisted Intervention, MICCAI 2001, Lecture Notes in Computer Science, Springer, Berlin-Heidelberg, pp. 889–896, 2001.
10.1007/3-540-45468-3_106 Google Scholar
- LEDESMA-CARBAYO M., KYBIC J., DESCO M. et al., “Spatio-temporal non-rigid registration for ultrasound cardiac motion estimation”, IEEE Transactions on Medical Imaging, vol. 24, no. 9, pp. 1113–1126, 2005.
- LUCAS B.D., KANADE T., “ An iterative image-registration technique with an application to stereo vision”, 7th International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, British Columbia, Canada, pp. 674–679, 1981.
- MAILLOUX G.E., BLEAU A., BERTRAND M. et al., “Computer analysis of heart motion from two-dimensional echocardiograms”, IEEE Transactions on Biomedical Engineering, vol. 34, no. 5, pp. 356–364, 1987.
- MARION A., VRAY D., “Spatiotemporal filtering of sequences of ultrasound images to estimate a dense field of velocities”, Pattern Recognition, vol. 42, no. 11, pp. 2989–2997, 2009.
- MCDONALD I.G., “The shape and movements of the human left ventricle during systole – a study by cineangiography and by cineradiography of epicardial markers”, American Journal of Cardiology, vol. 26, no. 3, pp. 221–230, 1970.
- MODERSITZKI J., Numerical Methods for Image Registration, Oxford University Press, Oxford, 2004.
- NAGEL H.H., “On the estimation of optical-flow – relations between different approaches and some new results”, Artificial Intelligence, vol. 33, no. 3, pp. 299–324, 1987.
- NOBLET V., HEINRICH C., HEITZ F. et al., “3D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization”, IEEE Transactions on Image Processing, vol. 14, no. 5, pp. 553–566, 2005.
- O'DELL W.G., MOORE C.C., HUNTER W.C. et al., “Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images”, Radiology, vol. 195, no. 3, pp. 829–835, 1995.
- ORKISZ M., CLARYSSE P., “Estimation du flot optique en présence de discontinuités: une revue”, Traitement du Signal, vol. 13, no. 5, pp. 489–513, 1996.
- PLANAT A.C., MAGNIN I.E., “Estimation de mouvement par maillage actif avec prise en compte de discontinuités”, Traitement du Signal, vol. 18, nos. 5–6, pp. 583–401, 2001.
- PRAKOSA A., SERMESANT M., DELINGETTE H. et al., “Generation of synthetic but visually realistic time series of cardiac images combining a biophysical model and clinical images”, IEEE Transactions on Medical Imaging, vol. 32, no. 1, pp. 99–109, 2013.
- QIAN Z., LIU Q., METAXAS D.N. et al., “Identifying regional cardiac abnormalities from myocardial strains using nontracking-based strain estimation and spatio-temporal tensor analysis”, IEEE Transactions on Medical Imaging, vol. 30, no. 12, pp. 2017–2029, 2011.
- RITMAN E., ROBB R., HARRIS L., Imaging Physiological Functions: Experience with the Dynamic Spatial Reconstructor, Praeger, New York, 1985.
- RYF S., SPIEGEL M.A., GERBER M. et al., “Myocardial tagging with 3D-CSPAMM”, Journal of Magnetic Resonance Imaging, vol. 16, no. 3, pp. 320–325, 2002.
- SARRUT D., DELHAY B., VILLARD P.-F. et al., “A comparison framework for breathing motion estimation methods from 4D imaging”, IEEE Transactions on Medical Imaging, vol. 26, no. 12, pp. 1636–1648, 2007.
- SARRUT D., VANDEMEULEBROUCKE J., RIT S., “ Intensity-based deformable registration: introduction and overview”, in J. EHRHARDT, C. LORENZ (eds), 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy, Springer, Berlin, 2013.
10.1007/978-3-642-36441-9_6 Google Scholar
- SCHNÖRR C., “Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class”, International Journal of Computer Vision, vol. 6, no. 1, pp. 25–38, 1991.
- SIMONCELLI E.P., Distributed representation of image velocity, vision and modeling, Technical report, MIT Media Laboratory, no. 202, October 1992.
- SPINÉI A., PELLERIN D., “Motion estimation of opaque or transparent objects using triads of Gabor filters”, Signal Processing, vol. 81, no. 4, pp. 845–853, 2001.
- STILLER C., KONRAD J., “Estimating motion in image sequences – a tutorial on modeling and computation of 2D motion”, IEEE Signal Processing Magazine, vol. 16, no. 4, pp. 70–91, 1999.
- SULMAN M., WILLIAMS J., RUSSELL R., “Optimal mass transport for higher dimensional adaptive grid generation”, Journal of Computational Physics, vol. 230, pp. 3302–3330, 2011.
- TENNANT R., WIGGERS C.J., “The effect of coronary occlusion on myocardial contraction”, American Journal of Physiology, vol. 112, pp. 351–361, 1935.
- VANDEMEULEBROUCKE J., RIT S., KYBIC J. et al., “Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs”, Medical Physics, vol. 38, no. 1, pp. 166–178, 2011.
- VERCAUTEREN T., PENNEC X., PERCHANT A. et al., “Diffeomorphic demons: efficient non-parametric image registration”, NeuroImage, vol. 45, no. 1, suppl. 1, pp. S61–S72, 2009.
- VILLE J., “Théorie et applications de la notion de signal analytique”, Câbles et Transmissions, vol. 61, pp. 61–74, 1948.
- VILLANI C., Topics in Optimal Transportation, Graduate Studies in Mathematics, American Mathematical Society, vol. 58, 2003.
- WAKS E., PRINCE J.L., DOUGLAS A.S., “ Cardiac motion simulator for tagged MRi”, IEEE Workshop Mathematical Methods in Biomedical Image Analysis, pp. 182–191, 1996.
- WEICKERT J., SCHNÖRR C., “A theoretical framework for convex regularizers in PDE-based computation of image motion”, International Journal of Computer Vision, vol. 45, no. 3, pp. 245–264, 2001.
- WEICKERT J., SCHNÖRR C., “Variational optic flow computation with spatio-temporal smoothness constraint”, Journal of Mathematical Imaging and Vision, vol. 14, pp. 245–255, 2001.
- XAVIER M., LALANDE A., WALKER P.M. et al., “An adapted optical flow algorithm for robust quantification of cardiac wall motion from standard cine-MR examinations”, IEEE Transactions on Information Technology in Biomedicine,vol. 16, no. 5, pp. 859–868, 2012.
- ZERHOUNI E., PARISH D., ROGERS W. et al., “Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion”,Radiology, vol. 169, pp. 59–63, 1988.