Production of Lactobacilli Proteinases for the Manufacture of Bioactive Peptides: Part II—Downstream Processes
Dominic Agyei
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
Search for more papers by this authorRavichandra Potumarthi
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
Search for more papers by this authorMichael K. Danquah
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
Search for more papers by this authorDominic Agyei
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
Search for more papers by this authorRavichandra Potumarthi
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
Search for more papers by this authorMichael K. Danquah
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
Search for more papers by this authorSe-Kwon Kim
Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
Department of Chemistry, Pukyoung National University, Nam-Gu, Busan, Republic of Korea
Search for more papers by this authorSummary
This chapter deals with the downstream processes of lactobacilli proteinases recovery, isolation and purification strategies. One of the most pressing bioprocess challenges in the area of production of pharmaceutical/biological materials is that of isolation and purification of the finished products. Although several isolation and purification methods exist for proteins, they must all be weighed out based on their merits and demerits. From the already established molecular and particle separations using membranes, centrifugation and phase-partitioning techniques, combinatoric techniques can be developed to ensure proteinase purification at the minimum allowed cost and high product purity. The industrial-scale use and commercialisation of lactobacilli proteinases will require the inputs of scientists, engineers, controls specialists, quality experts and economists. Further, with the important role and prospect of lactobacilli proteinases in industry, more targeted research is needed to aid in the development, purification and characterisation of robust enzymes with desired properties for wider industrial purposes.
References
- Agyei, D., Danquah, M. K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances, 29, 272–277.
- Antikainen, J., Kupannen, V., Lähteenmäki, K., Korhonen, T. K. (2007). pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. Journal of Bacteriology, 189, 4539–4543.
- Atlan, D., Laloi, P., Portalier, R. (1989). Isolation and characterization of aminopeptidase-deficient Lactobacillus bulgaricus mutants. Appl Environ Microbiol, 55, 1717–1723.
- Atlan, D., Laloi, P., Portalier, R. (1990). X-prolyl-dipeptidyl aminopeptidase of Lactobacillus delbrueckii subsp. bulgaricus: characterization of the enzyme and isolation of deficient mutants. Appl Environ Microbiol, 56, 2174–2179.
- Ballschmiter, K., Wößner, M. (1998). Recent developments in adsorption liquid chromatography (NP-HPLC) a review. Fresenius' Journal of Analytical Chemistry, 361, 743–755.
- Bennion, B. J., Daggett, V. (2003). The molecular basis for the chemical denaturation of proteins by urea. Proceedings of the National Academy of Sciences, 100, 5142–5147.
- Bhowmik, T., Johnson, M. C., Ray, B. (1985). Isolation and partial characterization of the surface protein of Lactobacillus acidophilus strains. International Journal of Food Microbiology, 2, 311–321.
- Brown, W. H., Poon, T. (2010). Introduction to Organic Chemistry. John Wiley & Sons.
-
Chagnaud, P., Jenkinson, H. F., Tannock, G. W. (1992). Cell surface-associated proteins of gastrointestinal strains of Lactobacilli. Microbial Ecology in Health and Disease, 5, 121–131.
10.3109/08910609209141306 Google Scholar
-
Chang, Y. K., Chase, H. A. (1996). Development of operating conditions for protein purification using expanded bed techniques: the effect of the degree of bed expansion on adsorption performance. Biotechnology and Bioengineering, 49, 512–526.
10.1002/(SICI)1097-0290(19960305)49:5<512::AID-BIT4>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- Chase, H. A. (1994). Purification of proteins by adsorption chromatography in expanded beds. Trends in Biotechnology, 12, 296–303.
- Clinkenbeard, K. D., Clinkenbeard, P. A., Waurzyniak, B. J. (1995). Chaotropic agents cause disaggregation and enhanced activity of Pasteurella haemolytica leukotoxin. Veterinary Microbiology, 45, 201–209.
- Cramer, S. M., Jayaraman, G. (1993). Preparative chromatography in biotechnology. Current Opinion in Biotechnology, 4, 217–225.
- Deepika, G., Green, R., Frazier, R., Charalampopoulos, D. (2009). Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus gg. Journal of Applied Microbiology, 107, 1230–1240.
-
Desai, M. A., Rayner, M., Burns, M., Bermingham, D. (2000). Application of chromatography in the downstream processing of biomolecules. In: Desai, M. A., ed. Downstream Processing of Proteins: Methods and Protocols. Humana Press: Totowa, NJ.
10.1007/978-1-59259-027-8 Google Scholar
- Dorsey, J. G., Cooper, W. T. (1994). Retention mechanisms of bonded-phase liquid chromatography. Analytical Chemistry, 66, 857a–867a.
- Dorsey, J. G., Dill, K. A. (1989). The molecular mechanism of retention in reversed-phase liquid chromatography. Chemical Reviews, 89, 331–346.
- Eijsink, V. G., Van Den Burg, B., Venema, G. (1991). High performance affinity chromatography of bacillus neutral proteases. Biotechnology and Applied Biochemistry, 14, 275–83.
- Espeche Turbay, M. A. B., Savoy De Giori, G., Hebert, E. M. (2009). Release of the cell-envelope-associated proteinase of Lactobacillus delbrueckii subspecies lactis CRL 581 is dependent upon pH and temperature. Journal of Agricultural and Food Chemistry, 57, 8607–8611.
- Exterkate, F. A. (1990). Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Appl Microbiol Biotechnol, 33, 401–406.
- Exterkate, F. A. (2000). Structural changes and interactions involved in the Ca2+−triggered stabilization of the cell-bound cell envelope proteinase in Lactococcus lactis subsp. cremoris SK11. Appl Environ Microbiol, 66, 2021–2028.
- Ezzat, N., El Soda, M., El Shafei, H. (1988). The cell-bound proteinase system of Lactobacillus casei—purification and characterization. International Journal of Food Microbiology, 6, 327–332.
- Ezzat, N., El Soda, M., El Shafei, H., Olson, N. F. (1993). Cell-wall associated peptide hydrolase and esterase activities in several cheese-related bacteria. Food Chemistry, 48, 19–23.
- Fira, D., Kojic, M., Banina, A., Spasojevic, I., Strahinic, I., Topisirovic, L. (2001). Characterization of cell envelope-associated proteinases of thermophilic Lactobacilli. Journal of Applied Microbiology, 90, 123–130.
- Gailliot, F. P., Gleason, C., Wilson, J. J., Zwarick, J. (1990). Fluidized bed adsorption for whole broth extraction. Biotechnology Progress, 6, 370–375.
- Gilbert, C., Blanc, B., Frot-Coutaz, J., Portalier, R., Atlan, D. (1997). Comparison of cell surface proteinase activities within the Lactobacillus genus. Journal of Dairy Research, 64, 561–571.
- Govrin, E., Levine, A. (1999). Purification of active cysteine proteases by affinity chromatography with attached E-64 inhibitor. Protein Expression and Purification, 15, 247–250.
- Gu, T., Zheng, Y. (1999). A study of the scale-up of reversed-phase liquid chromatography. Separation and Purification Technology, 15, 41–58.
- Gupta, R., Beg, Q. K., Khan, S., Chauhan, B. (2002a). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Applied Microbiology and Biotechnology, 60, 381–395.
- Gupta, R. G., Beg, Q. B., Lorenz, P. L. (2002b). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15–32.
- Hatefi, Y., Hanstein, W. G. (1969). Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proceedings of the National Academy of Sciences, 62, 1129–1136.
- Hebert, E., Mamone, G., Picariello, G., Raya, R., Savoy, G., Ferranti, P., Addeo, F. (2008). Characterization of the pattern of αs1- and β-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Appl Environ Microbiol, 74, 3682–3689.
- Hermanson, G. T., Mallia, A. K., Smith, P. K. (1992). Immobilized Affinity Ligand Techniques. Academic Press.
- Hickey, M. W., Hillier, A. J., Jago, G. R. (1986). Transport and metabolism of lactose, glucose, and galactose in homofermentative Lactobacilli. Appl Environ Microbiol, 51, 825–831.
- Hjorth, R. (1997). Expanded-bed adsorption in industrial bioprocessing: recent developments. Trends In Biotechnology, 15, 230–235.
- Hua, L., Zhou, R., Thirumalai, D., Berne, B. J. (2008). Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proceedings Of The National Academy Of Sciences, 105, 16928–16933.
- Hubbuch, J., Thommes, J., Kula, M. R. (2005). Biochemical engineering aspects of expanded bed adsorption. Advances in Biochemical Engineering/Biotechnology, 92, 101–123.
- Hussain, M., Peters, G., Chhatwal, G. S., Herrmann, M. (1999). A lithium chloride-extracted, broad-spectrum-adhesive 42-kilodalton protein of Staphylococcus epidermidis is Ornithine carbamoyltransferase. Infection And Immunity, 67, 6688–6690.
- Jarocki, P., Podlesny, M., Wasko, A., Siuda, A., Targonski, Z. (2010). Differentiation of three Lactobacillus rhamnosus strains (E/N, Oxy and Pen) by SDS-page and two-dimensional electrophoresis of surface-associated proteins. J Microbiol Biotechnol, 20, 558–562.
-
Jones, K., Baines, D. (2000). Affinity ligand technology: optimal protein separations for downstream processing. In: Desai, M. A., ed. Methods in Biotechnology, Downstream Processing of Proteins Methods and Protocols.
10.1007/978-1-59259-027-8_8 Google Scholar
- Kennedy, R. M. (2001). Expanded-bed Adsorption Chromatography: Current Protocols In Protein Science. John Wiley & Sons.
-
Kline, T. (1993). Handbook of Affinity Chromatography. Dekker.
10.1201/9781482285017 Google Scholar
- Kojic, M., Fira, D., Banina, A., Topisirovic, L. (1991). Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. Appl Environ Microbiol, 57, 1753–1757.
- Kumar, C. G., Takagi, H. (1999). Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, 17, 561–594.
- Kunji, E. R. S., Mierau, I., Hagting, A., Poolman, B., Konings, W. N. (1996). The proteotytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek, 70, 187–221.
- Kuznetsova, A., Bogacheva, A., Rudenskaya, G., Stepanov, V. (1997). Synthesis and application of sorbents for affinity chromatography of serine proteases. Chromatographia, 45, 44–48.
- Laloi, P., Atlan, D., Blanc, B., Gilbert, C., Portalier, R. (1991). Cell-wall-associated proteinase of Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397: differential extraction, purification and properties of the enzyme. Applied Microbiology and Biotechnology, 36, 196–204.
- Lebreton, B., Brown, A., Van Reis, R. (2008). Application of high-performance tangential flow filtration (HPTFF) to the purification of a human pharmaceutical antibody fragment expressed in Escherichia coli. Biotechnology and Bioengineering, 100, 964–974.
- Lienqueo, M. E., Salazar, O., Henriquez, K., Calado, C. R. C., Fonseca, L. P., Cabral, J. M. S. (2007). Prediction of retention time of cutinases tagged with hydrophobic peptides in hydrophobic interaction chromatography. Journal of Chromatography A, 1154, 460–463.
- López-Gallego, F., Montes, T., Fuentes, M., Alonso, N., Grazu, V., Betancor, L., Guisán, J. M., Fernández-Lafuente, R. (2005). Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. Journal of Biotechnology, 116, 1–10.
- Lortal, S., Van Heijenoort, J., Gruber, K., Sleytr, U. B. (1992). S-layer of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and re-formation after extraction with lithium chloride. J Gen Microbiol, 138, 611–618.
- Macedo, A. C., Tavares, T. G., Malcata, F. X. (2003). Purification and characterization of an intracellular aminopeptidase from a wild strain of Lactobacillus plantarum isolated from traditional Serra da Estrela cheese. Enzyme and Microbial Technology, 32, 41–48.
- Macnair, J. E., Lewis, K. C., Jorgenson, J. W. (1997). Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns. Analytical Chemistry, 69, 983–989.
- Mahn, A., Lienqueo, M. E., Salgado, J. C. (2009). Methods of calculating protein hydrophobicity and their application in developing correlations to predict hydrophobic interaction chromatography retention. Journal of Chromatography A, 1216, 1838–1844.
- Martín-Hernández, M. C., Alting, A. C., Exterkate, F. A. (1994). Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89. Applied Microbiology and Biotechnology, 40, 828–834.
- Mckenzie, H. A., White, F. H. Jr (1991). Lysozyme and α-lactalbumin: structure, function, and interrelationships. In: C.B. F. M. R. J. T. E. Anfinsen, S. E. David, eds. Advances in Protein Chemistry. Academic Press.
- Mcnay, J. L. M., Fernandez, E. J. (2001). Protein unfolding during reversed-phase chromatography: I. effect of surface properties and duration of adsorption. Biotechnology and Bioengineering, 76, 224–232.
- Melander, W. R., Chen, B.-K., Horvàth, C. (1979). mobile phase effects in reversed-phase chromatography: I. concomitant dependence of retention on column temperature eluent composition. Journal of Chromatography A, 185, 99–109.
- Næs, H., Chrzanowska, J., Blom, H. (1991). Partial purification and characterization of a cell wall bound proteinase from Lactobacillus casei. Food Chemistry, 42, 65–79.
- Nakamura, K., Suzuki, T., Hasegawa, M., Kato, Y., Sasaki, H., Inouye, K. (2003). Characterization of P-aminobenzamidine-based sorbent and its use for high-performance affinity chromatography of trypsin-like proteases. Journal of Chromatography A, 1009, 133–139.
- Nas, H., Nissen-Meyer, J. (1992). Purification and N-terminal amino acid sequence determination of the cell-wall-bound proteinase from Lactobacillus paracasei subsp. paracasei. Journal of General Microbiology, 138, 313–318.
- Nfor, B. K., Hylkema, N. N., Wiedhaup, K. R., Verhaert, P. D. E. M., Van Der Wielen, L. A. M., Ottens, M. (2011). High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation. Journal of Chromatography A, 1218, 8958–8973.
- Nielsen, P. M., Petersen, D., Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal Of Food Science, 66, 642–646.
- Oberg, C. J., Broadbent, J. R., Strickland, M., Mcmahon, D. J. (2002). Diversity in specificity of the extracellular proteinases in Lactobacillus helveticus and Lactobacillus delbrueckii subsp. Bulgaricus. Letters in Applied Microbiology, 34, 455–460.
- Ongkudon, C. M., Danquah, M. K. (2010). Process optimisation for anion exchange monolithic chromatography of 4.2 kbp plasmid vaccine (PCDNA3F). Journal of Chromatography B, 878, 2719–2725.
- Oommen, B. S., Mcmahon, D. J., Oberg, C. J., Broadbent, J. R., Strickland, M. (2002). Proteolytic specificity of Lactobacillus delbrueckli subsp. bulgaricus influences functional properties of mozzarella cheese. Journal of Dairy Science, 85, 2750–2758.
- Pastar, I., Tonic, I., Golic, N., Kojic, M., Van Kranenburg, R., Kleerebezem, M., Topisirovic, L., Jovanovic, G. (2003). Identification and genetic characterization of a novel proteinase, PRTR, from the human isolate Lactobacillus rhamnosus BGT10. Appl Environ Microbiol, 69, 5802–5811.
- Perrin, D. D. (1972). Dissociation Constants of Organic Bases in Aqueous Solution: Supplement 1972. Butterworths: London.
- Peters, K., Fittkau, S. (1990). [Affinity chromatography of proteases using peptide methyl ketones as ligands]. Biomedica Biochimica Acta, 49, 173–178.
- Queiroz, J. A., Tomaz, C. T., Cabral, J. M. S. (2001). Hydrophobic interaction chromatography of proteins. Journal Of Biotechnology, 87, 143–159.
- Rahman, R. N. Z. R. A., Basri, M., Salleh, A. B. (2003). Thermostable alkaline protease from Bacillus stearothermophilus F1; nutritional factors affecting protease production. Annals of Microbiology, 53, 199–210.
- Rao, S., Ager, K., Zydney, A. L. (2007). High performance tangential flow filtration using charged affinity ligands. Separation Science and Technology, 42, 2365–2385.
- Rojas, M., Ascencio, F., Conway, P. L. (2002). Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol, 68, 2330–2336.
- Russell, H., Facklam, R. R. (1975). Guanidine extraction of Streptococcal M protein. Infection and Immunity, 12, 679–686.
-
Sabotič, J., Koruza, K., Gabor, B., Peterka, M., Barut, M., Kos, J., Brzin, J. (2012). The value of fungal protease inhibitors in affinity chromatography. In: S. Magdeldin, ed. Affinity Chromatography. Intech.
10.5772/35354 Google Scholar
- Saksena, S., Zydney, A. L. (1994). Effect of solution pH and ionic strength on the separation of albumin from immunoglobulins (IGG) by selective filtration. Biotechnology and Bioengineering, 43, 960–968.
- Sánchez, B., Bressollier, P., Chaignepain, S., Schmitter, J.-M., Urdaci, M. C. (2009). Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus gg. International Dairy Journal, 19, 85–88.
- Saxena, A., Kumar, M., Tripathi, B. P., Shahi, V. K. (2010). Organic–inorganic hybrid charged membranes for proteins separation: isoelectric separation of proteins under coupled driving forces. Separation and Purification Technology, 70, 280–290.
- Schar-Zammaretti, P., Dillmann, M.-L., D'amico, N., Affolter, M., Ubbink, J. (2005). Influence of fermentation medium composition on physicochemical surface properties of Lactobacillus acidophilus. Appl Environ Microbiol, 71, 8165–8173.
- Schär-Zammaretti, P., Ubbink, J. (2003). The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophysical Journal, 85, 4076–4092.
- Siezen, R. J. (1999). Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie Van Leeuwenhoek, 76, 139–155.
- Thömmes, J. (1997). Fluidized Bed Adsorption as a Primary Recovery Step in Protein Purification New Enzymes for Organic Synthesis. Springer: Berlin/Heidelberg.
- Tsakalidou, E., Anastasiou, R., Vandenberghe, I., Van Beeumen, J., Kalantzopoulos, G. (1999). Cell-wall-bound proteinase of Lactobacillus delbrueckii subsp. lactis ACA–DC 178: characterization and specificity for β-casein. Applied and Environmental Microbiology, 65, 2035–2040.
- Turner, M., Timms, P., Hafner, L., Giffard, P. (1997). Identification and characterization of a basic cell surface-located protein from Lactobacillus fermentum BR11. J Bacteriol, 179, 3310–3316.
- Van Reis, R., Brake, J. M., Charkoudian, J., Burns, D. B., Zydney, A. L. (1999). High-performance tangential flow filtration using charged membranes. Journal of Membrane Science, 159, 133–142.
-
Van Reis, R., Gadam, S., Frautschy, L. N., Orlando, S., Goodrich, E. M., Saksena, S., Kuriyel, R., Simpson, C. M., Pearl, S., Zydney, A. L. (1997). High performance tangential flow filtration. Biotechnology and Bioengineering, 56, 71–82.
10.1002/(SICI)1097-0290(19971005)56:1<71::AID-BIT8>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- Vlakh, E. G., Tennikova, T. B. (2007). Preparation of methacrylate monoliths. Journal of Separation Science, 30, 2801–13.
- Wong, S. S., Wong, L.-J. C. (1992). Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme and Microbial Technology, 14, 866–874.
- Wu, Y., Zhou, J., Zhang, X., Zheng, X., Jiang, X., Shi, L., Yin, W., Wang, J. (2009). Optimized sample preparation for two-dimensional gel electrophoresis of soluble proteins from chicken bursa of fabricius. Proteome Sci, 7, 38.
- Yamamoto, N., Akino, A., Takano, T. (1993). Purification and specificity of a cell-wall-associated proteinase from Lactobacillus helveticus CP790. Journal of Biochemistry, 114, 740–745.
- You, L., Arnold, F. H. (1996). Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Engineering, 9, 77–83.
- Zevaco, C., Gripon, J.-C. (1988). Properties and specificity of a cell-wall proteinase from Lactobacillus helveticus. Lait, 68, 393–407.