Towards the Design of Open-Framework Cluster Materials: A Novel Layered Niobium Oxochloride with a Honeycomblike Structure
Ekaterina V. Anokhina
Department of Chemistry, Wake Forest University Winston-Salem, NC 27109, USA, Fax: (+1) 336-758-4656
Search for more papers by this authorCynthia S. Day Dr.
Department of Chemistry, Wake Forest University Winston-Salem, NC 27109, USA, Fax: (+1) 336-758-4656
Search for more papers by this authorMichael W. Essig
Department of Chemistry, Wake Forest University Winston-Salem, NC 27109, USA, Fax: (+1) 336-758-4656
Search for more papers by this authorAbdessadek Lachgar Prof. Dr.
Department of Chemistry, Wake Forest University Winston-Salem, NC 27109, USA, Fax: (+1) 336-758-4656
Search for more papers by this authorEkaterina V. Anokhina
Department of Chemistry, Wake Forest University Winston-Salem, NC 27109, USA, Fax: (+1) 336-758-4656
Search for more papers by this authorCynthia S. Day Dr.
Department of Chemistry, Wake Forest University Winston-Salem, NC 27109, USA, Fax: (+1) 336-758-4656
Search for more papers by this authorMichael W. Essig
Department of Chemistry, Wake Forest University Winston-Salem, NC 27109, USA, Fax: (+1) 336-758-4656
Search for more papers by this authorAbdessadek Lachgar Prof. Dr.
Department of Chemistry, Wake Forest University Winston-Salem, NC 27109, USA, Fax: (+1) 336-758-4656
Search for more papers by this authorThe authors are grateful to Dr. Peter White from the University of North Carolina at Chapel Hill, USA, for crystal data collection, and Prof. Hanno zur Loye, University of South Carolina, USA, for magnetic susceptibility measurements. Wake Forest University supported this research through a grant from the Research and Creativity Fund.
Abstract
Perfekt gestapelte Schichten aus Honigwaben liegen in dem Nioboxochlorid [{Tl5(Ti3Cl9)}{(Nb6Cl12O4)3(Ti3Cl4)2}] vor (siehe Bild), was zu Tunneln führt, die [Tl2Cl9]3−- und Tl+-Ionen enthalten (zur besseren Übersicht nicht gezeigt). Die Bildung dieser ungewöhnlichen Schichtstruktur scheint durch die Konfiguration der beiden Basisclustereinheiten und durch Templateffekte begünstigt.
References
- 1(a) S. L. Suib, Annu. Rev. Mater. Sci. 1996, 26, 135–151; (b) Zeolites and Related Microporous Materials (Eds.: J. Weitkamp, H. G. Karge, H. Pfeifer, W. Holderich), Elsevier, Amsterdam, 1994.
- 2
I. W. C. E. Arends,
R. A. Sheldon,
M. Wallau,
U. Schuchardt,
Angew. Chem.
1997,
109,
1190–1211;
10.1002/ange.19971091104 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 1144–1163.
- 3(a)
B. H. S. Thimmappa,
Coord. Chem. Rev.
1995,
143,
1–34;
(b)
Metal Clusters in Catalysis
(Eds.: B. C. Gates,
L. Guczi,
H. Knözinger),
Elsevier,
Amsterdam,
1986.
10.1016/S0167-2991(08)65380-X Google Scholar
- 4 Crystal structure data for 1: trigonal, space group Pλ c1, (no. 165), a=16.8990(5), c=18.0422(7) Å, V=4462.1(3) Å3, Z=2, ρcalcd=3.772 gcm−3, F(000)=4560, λ(MoKa)=0.71073 Å, μ(MoKa)=13.198 mm−1, T=153 K. A black hexagonal plate-like crystal (0.1 × 0.1 × 0.01 mm3) was selected under an inert atmosphere, sealed in a glass capillary, and used for data collection. The data were collected using Siemens SMART diffractometer equipped with a CCD area detector. A total of 24153 reflections were collected over the range 2.78≤2θ≤55.00≤; 3424 were independent. Lorentz, polarization, and empirical absorption corrections (Tmin=0.26, Tmax=0.78) were applied, and the structure was solved and refined against F2 with 3409 reflections (I>0s(I)) using the SHEXTL V5.1 package. Thallium sites are disordered over two closely spaced (0.35(4) Å) sites. The refinement of the central ligand position in the [Ti3Cl7O6] units showed that it is 80(2)% occupied by a chlorine and 20(2)% by an oxygen (O7) atom. The [Ti2Cl9] units are present about 90% of the time, so that the net stoichiometry is Tl4.87(16)Ti7.81(3)Nb18Cl51.51(16)O12.40(4) · The highest residual electron-density peak (1.724 e Å−3) is located between the two titanium atoms that form the dimers. Anisotropic refinement of all atoms except for O7 converged to R1=0.064, wR2=0.102. Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49) 7247-808-666; e-mail: [email protected]) on quoting the depository number CSD-410776.
- 5
E. V. Anokhina,
M. W. Essig,
A. Lachgar,
Angew. Chem.
1998,
110,
538–540;
10.1002/(SICI)1521-3757(19980216)110:4<538::AID-ANGE538>3.0.CO;2-3 Google ScholarAngew. Chem. Int. Ed. 1998, 37, 522–525.10.1002/(SICI)1521-3773(19980302)37:4<522::AID-ANIE522>3.0.CO;2-Y CAS Web of Science® Google Scholar
- 6 P. G. Dickens, M. S. Whittingham, Q. Rev. Chem. Soc. 1968, 22, 30–44.
- 7 The actual average composition of these units is Ti3Cl6.8O6.2 due to a partial substitution of the central chloride ligand by oxide.
- 8(a)
D. J. Hinz,
G. Meyer,
T. Dedecke,
W. Urland,
Angew. Chem.
1995,
107,
117;
10.1002/ange.19951070122 Google ScholarAngew. Chem. Int. Ed. Engl. 1995, 34, 71–73; (b) J. Zhang, R.-Y. Qi, J. D. Corbett, Inorg. Chem. 1991, 30, 4794–4798; (c) B. Krebs, G. Henkel, Z. Anorg. Allg. Chem. 1981, 474, 149–156.
- 9(a) B. Bajan, H.-J. Meyer, Z. Kristallogr. 1996, 211, 817; (b) T. Gloger, D. Hinz, G. Meyer, A. Lachgar, Z. Kristallogr. 1996, 211, 821.
- 10 R. Wang, W. F. Bradley, H. Steinfink, Acta Crystallogr. 1965, 18, 249–258.
- 11 Y. Piffard, A. Lachgar, M. Tournoux, J. Solid State Chem. 1985, 58, 253–256.
- 12 J. T. Vaughey, W. T. A. Harrison, L. L. Dussack, A. J. A. Jacobson, Inorg. Chem. 1994, 33, 4370–4375.
- 13(a) G. J. Miller, J. Alloys Compd. 1995, 229, 93–106; (b) G. J. Miller, J. Lin, Angew. Chem. 1994, 106, 357; Angew. Chem. Int. Ed. Engl. 1994, 33, 334–336.
- 14(a) S. Cordier, C. Perrin, M. Sergent, Eur. J. Solid State Inorg. Chem. 1994, 31, 1049–1060; (b) S. Cordier, C. Perrin, M. Sergent, Mat. Res. Soc. Bull. 1997, 32, 25–33.
- 15 The magnetic measurements were performed using a SQUID magnetometer at 0.5 and 4 T in the temperature range 4–300 K.
- 16 The Curie constant was obtained from the linear fit of Xmol versus T−1 at temperatures >20 K, based on the Curie law Xmol=C/T. The linear fit gives C=1.956 emumol−1, and a small diamagnetic contribution of 6.0 × 10−5 emumol−1. The expected magnetic moment for six unpaired electrons is μ6e=6 × μ1e=4.24 μB.
- 17 B. Briat, O. Kahn, I. Morgenstern-Badarau, J. C. Rivoal, Inorg. Chem. 1981, 20, 4193–4200.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.