Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions
Genevieve Marcoux
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Equally contributed.Search for more papers by this authorAudrey Magron
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Equally contributed.Search for more papers by this authorCaroline Sut
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
Search for more papers by this authorAudree Laroche
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Search for more papers by this authorSandrine Laradi
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
Search for more papers by this authorHind Hamzeh-Cognasse
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Search for more papers by this authorIsabelle Allaeys
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Search for more papers by this authorOphelie Cabon
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Search for more papers by this authorAnne-Sophie Julien
Department of Mathematics and Statistic, Université Laval, Quebec City, Québec, Canada
Search for more papers by this authorOlivier Garraud
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Search for more papers by this authorCorresponding Author
Fabrice Cognasse
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
Equally contributed.Address reprint requests to: Eric Boilard, PhD, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, 2705 Laurier Boulevard, Room T1-49, Québec, QC, Canada G1V 4G2; e-mail: [email protected]; or Fabrice Cognasse, PhD, Etablissement Français du Sang Auvergne-Rhône-Alpes, Département Scientifique, 25 Boulevard Pasteur, 42100 Saint-Etienne, France; e-mail: [email protected].
Search for more papers by this authorCorresponding Author
Eric Boilard
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Canadian National Transplantation Research Program, Edmonton, Alberta, Canada
Equally contributed.Address reprint requests to: Eric Boilard, PhD, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, 2705 Laurier Boulevard, Room T1-49, Québec, QC, Canada G1V 4G2; e-mail: [email protected]; or Fabrice Cognasse, PhD, Etablissement Français du Sang Auvergne-Rhône-Alpes, Département Scientifique, 25 Boulevard Pasteur, 42100 Saint-Etienne, France; e-mail: [email protected].
Search for more papers by this authorGenevieve Marcoux
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Equally contributed.Search for more papers by this authorAudrey Magron
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Equally contributed.Search for more papers by this authorCaroline Sut
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
Search for more papers by this authorAudree Laroche
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Search for more papers by this authorSandrine Laradi
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
Search for more papers by this authorHind Hamzeh-Cognasse
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Search for more papers by this authorIsabelle Allaeys
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Search for more papers by this authorOphelie Cabon
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Search for more papers by this authorAnne-Sophie Julien
Department of Mathematics and Statistic, Université Laval, Quebec City, Québec, Canada
Search for more papers by this authorOlivier Garraud
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Search for more papers by this authorCorresponding Author
Fabrice Cognasse
Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
Equally contributed.Address reprint requests to: Eric Boilard, PhD, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, 2705 Laurier Boulevard, Room T1-49, Québec, QC, Canada G1V 4G2; e-mail: [email protected]; or Fabrice Cognasse, PhD, Etablissement Français du Sang Auvergne-Rhône-Alpes, Département Scientifique, 25 Boulevard Pasteur, 42100 Saint-Etienne, France; e-mail: [email protected].
Search for more papers by this authorCorresponding Author
Eric Boilard
Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
Canadian National Transplantation Research Program, Edmonton, Alberta, Canada
Equally contributed.Address reprint requests to: Eric Boilard, PhD, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, 2705 Laurier Boulevard, Room T1-49, Québec, QC, Canada G1V 4G2; e-mail: [email protected]; or Fabrice Cognasse, PhD, Etablissement Français du Sang Auvergne-Rhône-Alpes, Département Scientifique, 25 Boulevard Pasteur, 42100 Saint-Etienne, France; e-mail: [email protected].
Search for more papers by this authorAbstract
BACKGROUND
Whereas platelet transfusion is a common medical procedure, inflammation still occurs in a fraction of transfused individuals despite the absence of any apparent infectious agents. Platelets can shed membrane vesicles, called extracellular vesicles (EVs), some of which contain mitochondria (mito+EV). With its content of damage-associated molecular pattern (DAMP), the mitochondrion can stimulate the innate immune system. Mitochondrial DNA (mtDNA) is a recognized DAMP detected in the extracellular milieu in numerous inflammatory conditions and in platelet concentrates. We hypothesized that platelet-derived mitochondria encapsulated in EVs may represent a reservoir of mtDNA.
STUDY DESIGN AND METHODS
Herein, we explored the implication of mito+EVs in the occurrence of mtDNA quantified in platelet concentrate supernatants that induced or did not induce transfusion adverse reactions.
RESULTS
We observed that EVs were abundant in platelet concentrates, and platelet-derived mito+EVs were more abundant in platelet concentrates that induced adverse reactions. A significant correlation (rs = 0.73; p < 0.0001) between platelet-derived mito+EV levels and mtDNA concentrations was found. However, there was a nonsignificant correlation between the levels of EVs without mitochondria and mtDNA concentrations (rs = −0.11; p = 0.5112). The majority of the mtDNA was encapsulated into EVs.
CONCLUSION
This study suggests that platelet-derived EVs, such as those that convey mitochondrial DAMPs, may be a useful biomarker for the prediction of potential risk of adverse transfusion reactions. Moreover, our work implies that investigations are necessary to determine whether there is a causal pathogenic role of mitochondrial DAMP encapsulated in EVs as opposed to mtDNA in solution.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Supporting Information
Filename | Description |
---|---|
trf15300-sup-0001-supinfo.docxWord 2007 document , 45.6 KB |
Appendix S1. Supplementary methods. Table S1. Adverse transfusion reaction–associated platelet concentrates. Table S2. Qualitative information of the transfusion product. Table S3. Quantitative information on the donors and on the platelet concentrates. Table S4. Quantification of EV subtype in platelet concentrates. Table S5. Cubic effect of EVs on adverse reaction. Table S6. Predictive values of EVs subtypes adjusted for the different adverse reaction. Table S7. EV subtype associations with mitochondrial DNA in platelet concentrates (n = 35) |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Sahler J, Grimshaw K, Spinelli SL, et al. Platelet storage and transfusions: new concerns associated with an old therapy. Drug Discov Today Dis Mech 2011; 8: e9-e14.
- 2Refaai MA, Phipps RP, Spinelli SL, et al. Platelet transfusions: impact on hemostasis, thrombosis, inflammation and clinical outcomes. Thromb Res 2011; 127: 287-91.
- 3Garraud O, Sut C, Haddad A, et al. Transfusion-associated hazards: a revisit of their presentation. Transfus Clin Biol 2018; 25: 118-35.
- 4Semple JW, McVey MJ, Kim M, et al. Targeting transfusion-related acute lung injury: the journey from basic science to novel therapies. Crit Care Med 2018; 46: e452-e8.
- 5Silliman CC, Curtis BR, Kopko PM, et al. Donor antibodies to HNA-3a implicated in TRALI reactions prime neutrophils and cause PMN-mediated damage to human pulmonary microvascular endothelial cells in a two-event in vitro model. Blood 2007; 109: 1752-5.
- 6Kapur R, Kim M, Aslam R, et al. T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10. Blood 2017; 129: 2557-69.
- 7Kapur R, Kim M, Rebetz J, et al. Gastrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury. Blood Adv 2018; 2: 1651-63.
- 8Heddle NM. Febrile nonhemolytic transfusion reactions to platelets. Curr Opin Hematol 1995; 2: 478-83.
- 9Heddle NM, Klama L, Singer J, et al. The role of the plasma from platelet concentrates in transfusion reactions. N Engl J Med 1994; 331: 625-8.
- 10Sut C, Tariket S, Aubron C, et al. The non-hemostatic aspects of transfused platelets. Front Med (Lausanne) 2018; 5: 42.
- 11Blumberg N, Gettings KF, Turner C, et al. An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions. Transfusion 2006; 46: 1813-21.
- 12Sahler J, Spinelli S, Phipps R, et al. CD40 ligand (CD154) involvement in platelet transfusion reactions. Transfus Clin Biol 2012; 19: 98-103.
- 13Cognasse F, Sut C, Fromont E, et al. Platelet soluble CD40-ligand level is associated with transfusion adverse reactions in a mixed threshold-and-hit model. Blood 2017; 130: 1380-3.
- 14Melki I, Tessandier N, Zufferey A, et al. Platelet microvesicles in health and disease. Platelets 2017; 28: 214-21.
- 15Burnouf T, Goubran HA, Chou ML, et al. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev 2014; 28: 155-66.
- 16Xie RF, Hu P, Li W, et al. The effect of platelet-derived microparticles in stored apheresis platelet concentrates on polymorphonuclear leucocyte respiratory burst. Vox Sang 2014; 106: 234-41.
- 17Xie RF, Hu P, Wang ZC, et al. Platelet-derived microparticles induce polymorphonuclear leukocyte-mediated damage of human pulmonary microvascular endothelial cells. Transfusion 2015; 55: 1051-7.
- 18Dasgupta SK, Le A, Chavakis T, et al. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 2012; 125: 1664-72.
- 19Fujii T, Sakata A, Nishimura S, et al. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc Natl Acad Sci U S A 2015; 112: 12800-5.
- 20Happonen KE, Tran S, Morgelin M, et al. The Gas6-Axl interaction mediates endothelial uptake of platelet microparticles. J Biol Chem 2016; 291: 10586-601.
- 21Boilard E, Duchez AC, Brisson A. The diversity of platelet microparticles. Curr Opin Hematol 2015; 22: 437-44.
- 22Cloutier N, Tan S, Boudreau LH, et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 2013; 5: 235-49.
- 23Arraud N, Linares R, Tan S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 2014; 12: 614-27.
- 24Andersen JL, Kornbluth S. The tangled circuitry of metabolism and apoptosis. Mol Cell 2013; 49: 399-410.
- 25Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet 2009; 43: 95-118.
- 26Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science 1999; 283: 1476-81.
- 27Arechaga I. Membrane invaginations in bacteria and mitochondria: common features and evolutionary scenarios. J Mol Microbiol Biotechnol 2013; 23: 13-23.
- 28Lang BF, Burger G, O'Kelly CJ, et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 1997; 387: 493-7.
- 29Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014; 505: 335-43.
- 30Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464: 104-7.
- 31McDonald B, Pittman K, Menezes GB, et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 2010; 330: 362-6.
- 32Sandhir R, Halder A, Sunkaria A. Mitochondria as a centrally positioned hub in the innate immune response. Biochim Biophys Acta 1863; 2017: 1090-7.
- 33Mills EL, Kelly B, O'Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol 2017; 18: 488-98.
- 34Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015; 42: 406-17.
- 35West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol 2011; 11: 389-402.
- 36Krysko DV, Agostinis P, Krysko O, et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 2011; 32: 157-64.
- 37Zhao Z, Wang M, Tian Y, et al. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice. Blood 2016; 127: 2763-72.
- 38Boudreau LH, Duchez AC, Cloutier N, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014; 124: 2173-83.
- 39Hajizadeh S, DeGroot J, TeKoppele JM, et al. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther 2003; 5: R234-40.
- 40Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016; 22: 146-53.
- 41Caielli S, Athale S, Domic B, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med 2016; 213: 697-713.
- 42Garcia-Martinez I, Santoro N, Chen Y, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016; 126: 859-64.
- 43Simmons JD, Lee YL, Mulekar S, et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg 2013; 258: 591-6 discussion 6-8.
- 44Nakahira K, Kyung SY, Rogers AJ, et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 2013; 10: e1001577; discussion e.
- 45Marcoux G, Boilard E. Mitochondrial damage-associated molecular patterns in blood transfusion products. ISBT Sci Ser 2017; 12: 501-5.
10.1111/voxs.12381 Google Scholar
- 46Marcoux G, Duchez AC, Rousseau M, et al. Microparticle and mitochondrial release during extended storage of different types of platelet concentrates. Platelets 2017; 28: 272-80.
- 47Dean WL, Lee MJ, Cummins TD, et al. Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haemost 2009; 102: 711-8.
- 48Chen Z, Schubert P, Bakkour S, et al. p38 mitogen-activated protein kinase regulates mitochondrial function and microvesicle release in riboflavin- and ultraviolet light-treated apheresis platelet concentrates. Transfusion 2017; 57: 1199-207.
- 49Bakkour S, Acker JP, Chafets DM, et al. Manufacturing method affects mitochondrial DNA release and extracellular vesicle composition in stored red blood cells. Vox Sang 2016; 111: 22-32.
- 50Cognasse F, Aloui C, Anh Nguyen K, et al. Platelet components associated with adverse reactions: predictive value of mitochondrial DNA relative to biological response modifiers. Transfusion 2016; 56: 497-504.
- 51Magron A, Laugier J, Provost P, et al. Pathogen reduction technologies: the pros and cons for platelet transfusion. Platelets 2018; 29: 2-8.
- 52Simmons JD, Lee YL, Pastukh VM, et al. Potential contribution of mitochondrial DNA damage associated molecular patterns in transfusion products to the development of acute respiratory distress syndrome after multiple transfusions. J Trauma Acute Care Surg 2017; 82: 1023-9.
- 53Bakkour S, Chafets DM, Wen L, et al. Development of a mitochondrial DNA real-time polymerase chain reaction assay for quality control of pathogen reduction with riboflavin and ultraviolet light. Vox Sang 2014; 107: 351-9.
- 54Yasui K, Matsuyama N, Kuroishi A, et al. Mitochondrial damage-associated molecular patterns as potential proinflammatory mediators in post-platelet transfusion adverse effects. Transfusion 2016; 56:1201–12.
- 55Lee YL, King MB, Gonzalez RP, et al. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. J Surg Res 2014; 191: 286-9.
- 56Nomura S, Okamae F, Abe M, et al. Platelets expressing P-selectin and platelet-derived microparticles in stored platelet concentrates bind to PSGL-1 on filtrated leukocytes. Clin Appl Thromb Hemost 2000; 6: 213-21.
- 57Maslanka K, Uhrynowska M, Lopacz P, et al. Analysis of leucocyte antibodies, cytokines, lysophospholipids and cell microparticles in blood components implicated in post-transfusion reactions with dyspnoea. Vox Sang 2015; 108: 27-36.
- 58Millar D, Murphy L, Labrie A, et al. Routine screening method for microparticles in platelet transfusions. J Vis Exp 2018; 131: e56893. https://doi.org/10.3791/56893.
- 59Heijnen HF, Schiel AE, Fijnheer R, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94: 3791-9.
- 60Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 2014; 3: 26913.
- 61Kandace Gollomp IJ, Kim M, Zhai L, et al. Platelet factor 4 (PF4)-mediated neutrophil extracellular trap compaction limits endothelial injury and promotes survival following lipopolysaccharide challenge. Blood 2017; 130(Suppl 1): 997.
- 62Khan SY, Kelher MR, Heal JM, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood 2006; 108: 2455-62.
- 63Phipps RP, Kaufman J, Blumberg N. Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion. Lancet 2001; 357: 2023-4.
- 64Andre P, Prasad KS, Denis CV, et al. CD40L stabilizes arterial thrombi by a beta3 integrin–dependent mechanism. Nat Med 2002; 8: 247-52.
- 65Duchez AC, Boudreau LH, Bollinger J, et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A 2015; 112: E3564-73.
- 66Kohler C, Radpour R, Barekati Z, et al. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer 2009; 8: 105.