Extensive functional analyses of RHD splice site variants: Insights into the potential role of splicing in the physiology of Rh
Corresponding Author
Yann Fichou
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Address reprint requests to: Yann Fichou, PhD, Etablissement Français du Sang (EFS)–Région Bretagne, Inserm UMR1078, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex, France; e-mail: [email protected]Search for more papers by this authorPierre Gehannin
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Search for more papers by this authorManon Corre
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Search for more papers by this authorAlice Le Guern
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Search for more papers by this authorCédric Le Maréchal
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan
Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.
Search for more papers by this authorGérald Le Gac
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan
Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.
Search for more papers by this authorClaude Férec
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan
Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.
Search for more papers by this authorCorresponding Author
Yann Fichou
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Address reprint requests to: Yann Fichou, PhD, Etablissement Français du Sang (EFS)–Région Bretagne, Inserm UMR1078, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex, France; e-mail: [email protected]Search for more papers by this authorPierre Gehannin
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Search for more papers by this authorManon Corre
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Search for more papers by this authorAlice Le Guern
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Search for more papers by this authorCédric Le Maréchal
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan
Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.
Search for more papers by this authorGérald Le Gac
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan
Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.
Search for more papers by this authorClaude Férec
Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1078
Etablissement Français du Sang (EFS)–Région Bretagne
Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan
Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.
Search for more papers by this authorThis work was supported by the Association Recherche et Transfusion (ART; Contract 63-2012); the Etablissement Français du Sang (EFS)–Région Bretagne; and the Institut National de la Santé et de la Recherche Médicale (Inserm), France.
Abstract
BACKGROUND
Among more than 300 mutated alleles identified so far within the RHD gene, almost 40 are assumed to alter cellular splicing and therefore may have a direct effect on Rh phenotype both at the quantitative and at the qualitative levels. Functional data are, however, mostly unavailable to assess the direct involvement of splicing defect in the underlying physiology.
STUDY DESIGN AND METHODS
We generated plasmid constructs to carry out an exhaustive investigation of 38 RHD variants located within or in the vicinity of exon–intron junctions by a minigene splicing assay, further characterized the transcript structures by sequencing, and identified cryptic sites activated by the genetic defect. Bioinformatics predictions were carried out in parallel and compared with the functional data.
RESULTS
For the first time we demonstrate that a product including the full-length Exon 9 is transcribed in the presence of the c.1227G>A substitution frequently carried by Asians with DEL phenotype and confirmed that splicing is altered in the RHD*weak D Type 2 allele, a rare variant most commonly found in Caucasians.
CONCLUSION
Overall we 1) show significant correlation between functional analyses, bioinformatics predictions, and phenotypes, when available, especially for variants in close proximity of the consensus splice sites; 2) classify the variations as splicing or nonsplicing variants; and 3) provide functional data to further improve bioinformatics splicing tools. Conversely assessment of seven silent exonic variants was mainly inconclusive.
Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher's Web site:
Filename | Description |
---|---|
trf13083-sup-0001-suppinfo.docx13.2 KB | Supporting Information |
trf13083-sup-0002-suppfigs.doc26.7 MB |
Fig. S1. Schematic representation of the strategy used to generate the c.1154G>C construct. (A) Two products were first amplified by PCRs 1 and 2 by using wild-type and RHD*weak D type 2 genomic DNAs as templates, respectively, resulting in the generation of partially overlapping wild-type and variant sequences. PCR products 1 and 2 were then diluted at 1/100th, and mixed together for PCR 3. Arrows with extensions: PCR primers for exon 9 amplification (Table SI, available as supporting information in the online version of this paper); arrows: complementary primers 5′-CTGTTTAAATGCATAATTTAATGTTAAAAG-3′ in PCR 1, and 5′-CTTTTAACATTAAATTATGCATTTAAACAG-3′ in PCR 2; nucleotides to incorporate are bold red underlined; nucleotides to remove are bold black underlined. PCR conditions are those defined in the manuscript. (B) Control of PCR amplifications by agarose gel electrophoresis; bp: base pairs. Fig. S2. Sequencing profiles of the RT-PCR products including full-length and alternative products of the respective exons (A-H). Arrowheads in the sequencing profiles indicate the position of the variant of interest; bp: base pairs. Fig. S3. Functional analysis of silent exonic RHD variants by minigene splicing assay in K-562 cells. NT = not transfected; pSP = pSplicePOLR2G vector; WT = wild-type construct; bp = base pairs. |
trf13083-sup-0003-supptables.doc66 KB |
Table S1. Primer sequences for PCR amplification of RHD exons and flanking intronic regions. Table S2. Primer sequences for site-directed mutagenesis. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Schroeder SC, Schwer B, Shuman S, et al. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 2000; 14: 2435–40.
- 2Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci 2006; 119: 2635–41.
- 3Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007; 8: 749–61.
- 4Padgett RA. New connections between splicing and human disease. Trends Genet 2012; 28: 147–54.
- 5Avent ND, Ridgwell K, Tanner MJ, et al. cDNA cloning of a 30 kDa erythrocyte membrane protein associated with Rh (Rhesus)-blood-group-antigen expression. Biochem J 1990; 271: 821–5.
- 6Chérif-Zahar B, Bloy C, Le Van Kim C, et al. Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc Natl Acad Sci U S A 1990; 87: 6243–7.
- 7Le van Kim C, Mouro I, Chérif-Zahar B, et al. Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc Natl Acad Sci U S A 1992; 89: 10925–9.
- 8Daniels G. Variants of RhD—current testing and clinical consequences. Br J Haematol 2013; 161: 461–70.
- 9Reese MG, Eeckman FH, Kulp D, et al. Improved splice site detection in Genie. J Comput Biol 1997; 4: 311–23.
- 10Pertea M, Lin X, Salzberg SL. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res 2001; 29: 1185–90.
- 11Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 2004; 11: 377–94.
- 12Desmet FO, Hamroun D, Lalande M, et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009; 37: e67.
- 13Shao CP, Maas JH, Su YQ, et al. Molecular background of Rh D-positive, D-negative, D(el) and weak D phenotypes in Chinese. Vox Sang 2002; 83: 156–61.
- 14Chen JC, Lin TM, Chen YL, et al. RHD 1227A is an important genetic marker for RhD(el) individuals. Am J Clin Pathol 2004; 122: 193–8.
- 15Kim JY, Kim SY, Kim CA, et al. Molecular characterization of D- Korean persons: development of a diagnostic strategy. Transfusion 2005; 45: 345–52.
- 16Yang YF, Wang YH, Chen JC, et al. Prevalence of RHD 1227A and hybrid Rhesus box in the general Chinese population. Transl Res 2007; 149: 31–6.
- 17Li Q, Hou L, Guo ZH, et al. Molecular basis of the RHD gene in blood donors with DEL phenotypes in Shanghai. Vox Sang 2009; 97: 139–46.
- 18Chen Q, Li M, Li M, et al. Molecular basis of weak D and DEL in Han population in Anhui Province, China. Chin Med J 2012; 125: 3251–5.
- 19Liu HC, Eng HL, Yang YF, et al. Aberrant RNA splicing in RHD 7-9 exons of DEL individuals in Taiwan: a mechanism study. Biochim Biophys Acta 2010; 1800: 565–73.
- 20Fichou Y, Le Maréchal C, Jamet D, et al. Establishment of a medium-throughput approach for the genotyping of RHD variants and report of nine novel rare alleles. Transfusion 2013; 53: 1821–28.
- 21Callebaut I, Joubrel R, Pissard S, et al. Comprehensive functional annotation of 18 missense mutations found in suspected hemochromatosis type 4 patients. Hum Mol Genet 2014; 23: 4479–90.
- 22Vege S, Copeland TR, Nickle PA, et al. RHD exon consensus splice-site changes, 334A>G and 1228T>G associated with weak D expression. Transfusion 2009; 49: 118–9A.
- 23Ye LY, Guo ZH, Li Q, et al. Molecular and family analyses revealed two novel RHD alleles in a survey of a Chinese RhD-negative population. Vox Sang 2007; 92: 242–6.
- 24Krog GR, Clausen FB, Berkowicz A, et al. Is current serologic RhD typing of blood donors sufficient for avoiding immunization of recipients? Transfusion 2011; 51: 2278–85.
- 25Etheridge W, Tilley L, Poole J, et al. Two novel D genes of the Rh blood group system producing D variant phenotypes. Transfus Med 2006; 16 Suppl s1: 21–2.
10.1111/j.1365-3148.2006.00693_49.x Google Scholar
- 26Wagner FF, Frohmajer A, Flegel WA. RHD positive haplotypes in D negative Europeans. BMC Genet 2001; 2: 10.
- 27Flegel WA, von Zabern I, Wagner FF. Six years' experience performing RHD genotyping to confirm D- red blood cell units in Germany for preventing anti-D immunizations. Transfusion 2009; 49: 465–71.
- 28Ye L, He Y, Gao H, et al. Weak D phenotypes caused by intronic mutations in the RHD gene: four novel weak D alleles identified in the Chinese population. Transfusion 2013; 53: 1829–33.
- 29Le Maréchal C, Guerry C, Benech C, et al. Identification of 12 novel RHD alleles in western France by denaturing high-performance liquid chromatography analysis. Transfusion 2007; 47: 858–63.
- 30Kamesaki T, Iwamoto S, Kumada M, et al. Molecular characterization of weak D phenotypes by site-directed mutagenesis and expression of mutant Rh-green fluorescence protein fusions in K562 cells. Vox Sang 2001; 81: 254–8.
- 31Wagner FF, Mardt I, Bittner R, et al. RHD PCR of blood donors in Northern Germany: use of adsorption/elution to determine D antigen status. Vox Sang 2012; 103: 15.
- 32M, Simon S, Gouvitsos J, et al. Weak D and DEL alleles detected by routine SNaPshot genotyping: identification of four novel RHD alleles. Transfusion 2011; 51: 401–11.
- 33Chen Q, Flegel WA. Random survey for RHD alleles among D+ European persons. Transfusion 2005; 45: 1183–91.
- 34Müller TH, Wagner FF, Trockenbacher A, et al. PCR screening for common weak D types shows different distributions in three Central European populations. Transfusion 2001; 41: 45–52.
- 35Scott SA, Nagl L, Tilley L, et al. The RHD(1227G>A) DEL-associated allele is the most prevalent DEL allele in Australian D- blood donors with C+ and/or E+ phenotypes. Transfusion 2014; 54: 2931–40.
- 36Okuda H, Kawano M, Iwamoto S, et al. The RHD gene is highly detectable in RhD-negative Japanese donors. J Clin Invest 1997; 100: 373–9.
- 37Körmöczi GF, Legler TJ, Daniels GL, et al. Molecular and serologic characterization of DWI, a novel “high-grade” partial D. Transfusion 2004; 44: 575–80.
- 38Wagner FF, Gassner C, Müller TH, et al. Molecular basis of weak D phenotypes. Blood 1999; 93: 385–93
- 39Denomme GA, Wagner FF, Fernandes BJ, et al. Partial D, weak D types, and novel RHD alleles among 33,864 multiethnic patients: implications for anti-D alloimmunization and prevention. Transfusion 2005; 45: 1554–60.
- 40Flegel WA. Molecular genetics and clinical applications for RH. Transfus Apher Sci 2011; 44: 81–91.
- 41Silvy M, Chapel-Fernandes S, Callebault I, et al. Characterization of novel RHD alleles: relationship between phenotype, genotype, and trimeric architecture. Transfusion 2012; 52: 2020–9.
- 42Vege S, Whorley T, Haspel RL, et al. The weak D type 2 mutation 1154G>C is associated with exon skipping [abstract]. Transfusion 2007; 47: 160A.
- 43Shao CP, Xiong W, Zhou YY. Multiple isoforms excluding the normal RhD mRNA detected in Rh blood group Del phenotype with RHD 1227A allele. Transfus Apher Sci 2006; 34: 145–52.
- 44Fairbrother WG, Yeh RF, Sharp PA, et al. Predictive identification of exonic splicing enhancers in human genes. Science 2002; 297: 1007–13.
- 45Cartegni L, Wang J, Zhu Z, et al. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003; 31: 3568–71.
- 46Ke S, Shang S, Kalachikov SM, et al. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res 2011; 21: 1360–74.
- 47de Coulgeans CD, Silvy M, Halverson G, et al. Synonymous nucleotide polymorphisms influence Dombrock blood group protein expression in K562 cells. Br J Haematol 2014; 164: 131–41.