Geographically weighted regression-based determinants of malaria incidences in northern China
Corresponding Author
Yong Ge
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China
University of Chinese Academy of Sciences, Beijing, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
Correspondence Yong Ge, State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China. Email: [email protected]Search for more papers by this authorYongze Song
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China
School of Land Science and Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorJinfeng Wang
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China
Key Laboratory of Surveillance and Early Warning on Infectious Diseases, Chinese Center for Diseases Control and Prevention, Beijing, China
Search for more papers by this authorWei Liu
Department of Geography, Michigan State University, East Lansing, USA
Search for more papers by this authorZhoupeng Ren
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China
Key Laboratory of Surveillance and Early Warning on Infectious Diseases, Chinese Center for Diseases Control and Prevention, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorJunhuan Peng
School of Land Science and Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorBinbin Lu
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
Search for more papers by this authorCorresponding Author
Yong Ge
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China
University of Chinese Academy of Sciences, Beijing, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
Correspondence Yong Ge, State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China. Email: [email protected]Search for more papers by this authorYongze Song
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China
School of Land Science and Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorJinfeng Wang
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China
Key Laboratory of Surveillance and Early Warning on Infectious Diseases, Chinese Center for Diseases Control and Prevention, Beijing, China
Search for more papers by this authorWei Liu
Department of Geography, Michigan State University, East Lansing, USA
Search for more papers by this authorZhoupeng Ren
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, China
Key Laboratory of Surveillance and Early Warning on Infectious Diseases, Chinese Center for Diseases Control and Prevention, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorJunhuan Peng
School of Land Science and Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorBinbin Lu
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
Search for more papers by this authorAbstract
Geographically weighted regression (GWR) is an important local method to explore spatial non-stationarity in data relationships. It has been repeatedly used to examine spatially varying relationships between epidemic diseases and predictors. Malaria, a serious parasitic disease around the world, shows spatial clustering in areas at risk. In this article, we used GWR to explore the local determinants of malaria incidences over a 7-year period in northern China, a typical mid-latitude, high-risk malaria area. Normalized difference vegetation index (NDVI), land surface temperature (LST), temperature difference, elevation, water density index (WDI) and gross domestic product (GDP) were selected as predictors. Results showed that both positively and negatively local effects on malaria incidences appeared for all predictors except for WDI and GDP. The GWR model calibrations successfully depicted spatial variations in the effect sizes and levels of parameters, and also showed substantially improvements in terms of goodness of fits in contrast to the corresponding non-spatial ordinary least squares (OLS) model fits. For example, the diagnostic information of the OLS fit for the 7-year average case is R2 = 0.243 and AICc = 837.99, while significant improvement has been made by the GWR calibration with R2 = 0.800 and AICc = 618.54.
REFERENCES
- Anselin, L. (1995). Local Indicators of Spatial Association – LISA. Geographical Analysis, 27, 93–115.
- Anthony, R. L., Bangs, M. J., Hamzah, N., Basri, H., Purnomo, & Subianto, B. (1992). Heightened transmission of stable malaria in an isolated population in the highlands of Irian-Jaya, Indonesia. American Journal of Tropical Medicine & Hygiene, 47, 346–356.
- Arnaez, J., Roa, M. A., Albert, L., Cogollos, R., Rubio, J. M., Villares, R., …, & Lopez-Velez, R. (2010). Imported malaria in children: A comparative study between recent immigrants and immigrant travelers (VFRs). Journal of Travel Medicine, 17, 221–227.
- Ayele, D. G., Zewotir, T. T., & Mwambi, H. G. (2012). Prevalence and risk factors of malaria in Ethiopia. Malaria Journal, 11, 195.
- Baeza, A., Bouma, M. J., Dobson, A. P., Dhiman, R., Srivastava, H. C., & Pascual, M. (2011). Climate forcing and desert malaria: the effect of irrigation. Malaria Journal, 10, 190.
- Banguero, H. (1984). Socioeconomic factors associated with malaria in Colombia,” Social Science & Medicine, 19, 1099–1104.
- Beguin, A., Hales, S., Rocklov, J., Astrom, C., Louis, V. R., & Sauerborn, R. (2011). The opposing effects of climate change and socio-economic development on the global distribution of malaria. Global Environmental Change – Human & Policy Dimensions, 21, 1209–1214.
- Black, N. C. (2014). An ecological approach to understanding adult obesity prevalence in the United States: A county-level analysis using geographically weighted regression. Applied Spatial Analysis & Policy, 7, 283–299.
- Brunsdon, C., Fotheringham, A. S., Charlton, M. E. (1996). Geographically weighted regression: A method for exploring spatial non-stationarity. Geographical Analysis, 28, 281–298.
- Ceccato, P., Connor, S. J., Jeanne, I., & Thomson, M. C. (2005). Application of geographical information systems and remote sensing technologies for assessing and monitoring malaria risk. Parassitologia, 47, 81–96.
- Chen, J., Liao, A., Chen, L., Zhang, H., He, C., Peng, C., …, & Sang, H. (2014). Global land surface water dataset in 30 m resolution (2010). Beijing, China: Global Change Research Data Publishing & Repository.
- Chi, S. H., Grigsby-Toussaint, D. S., Bradford, N., & Choi, J. (2013). Can geographically weighted regression improve our contextual understanding of obesity in the US? Findings from the USDA Food Atlas. Applied Geography, 44, 134–142.
- Clark, S. D. (2007). Estimating local car ownership models. Journal of Transport Geography, 15, 184–197.
- Dambach, P., Machault, V., Lacaux, J. P., Vignolles, C., Sie, A., & Sauerborn, R. (2012). Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa. International Journal of Health Geographics, 11, 8.
- Department of Comprehensive Statistics, Department of Regional Statistics, & National Bureau of Statistics. 2011. China Statistical Yearbook for Regional Economy. Beijing: China Statistics Press.
- Dziauddin, M. F., Powe, N., & Alvanides, S. (2015). Estimating the effects of light rail transit (LRT) system on residential property values using geographically weighted regression (GWR). Applied Spatial Analysis & Policy, 8, 1–25.
- Farber, S., & Páez, A. (2007). A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations. Journal of Geographical Systems, 9, 371–396.
- Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. Chichester, UK: John Wiley & Sons.
- Fotheringham, A. S., Charlton, M., & Brunsdon, C. (1998). Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environment & Planning A, 30, 1905–1927.
- Gao, J. B., & Li, S. C. (2011). Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using geographically weighted regression. Applied Geography, 31, 292–302.
- Gaudart, J., Toure, O., Dessay, N., Dicko, A. L., Ranque, S., Forest, L., …, & Doumbo, O. K. (2009). Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali. Malaria Journal, 8, 61.
- Gething, P. W., Elyazar, I. R., Moyes, C. L., Smith, D. L., Battle, K. E., Guerra, C. A., …, & Hay, S. I. (2012). A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Neglected Tropical Diseases, 6(9), e1814.
- Gething, P. W., Patil, A. P., Smith, D. L., Guerra, C. A., Elyazar, I. R., Johnston, G. L., …, & Hay, S. I. (2011). A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal, 10, 378.
- Giardina, F., Gosoniu, L., Konate, L., Diouf, M. B., Perry, R., Gaye, O., …, & Vounatsou, P. (2012). Estimating the burden of malaria in Senegal: Bayesian zero-inflated binomial geostatistical modeling of the MIS 2008 data. PLoS One, 7(3), e32625.
- Grillet, M. E., Barrera, R., Martinez, J. E., Berti, J., & Fortin, M. J. (2010). Disentangling the effect of local and global spatial variation on a mosquito-borne infection in a neotropical heterogeneous environment. American Journal of Tropical Medicine & Hygiene, 82, 194–201.
- Guerra, C. A., Gikandi, P. W., Tatem, A. J., Noor, A. M., Smith, D. L., Hay, S. I., & Snow, R. W. (2008). The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Medicine, 5(2), e38.
- Guerra, C. A., Howes, R. E., Patil, A. P., Gething, P. W., Van Boeckel, T. P., Temperley, W. H., …, & Hay, S. I. (2010). The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Neglected Tropical Diseases, 4(8), e774.
-
Haining, R. P. (2003). Spatial data analysis: Theory and practice. Cambridge, UK: Cambridge University Press.
10.1017/CBO9780511754944 Google Scholar
- Haque, U., Hashizume, M., Glass, G. E., Dewan, A. M., Overgaard, H. J., & Yamamoto, T. (2010). The role of climate variability in the spread of malaria in Bangladeshi highlands. PLoS One, 5(12), e14341.
- Haque, U., Scott, L. M., Hashizume, M., Fisher, E., Haque, R., Yamamoto, T., & Glass, G. E. (2012). Modelling malaria treatment practices in Bangladesh using spatial statistics. Malaria Journal, 11, 63.
- Hay, S. I., Cox, J., Rogers, D. J., Randolph, S. E., Stern, D. I., Shanks, G. D., …, & Snow, R. W. (2002). Climate change and the resurgence of malaria in the East African highlands. Nature, 415, 905–909.
- Hay, S. I., Omumbo, J. A., Craig, M. H., & Snow, R. W. (2000). Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Advances in Parasitology, 47, 173–215.
- Hay, S. I., Snow, R. W., & Rogers, D. J. (1998a). From predicting mosquito habitat to malaria seasons using remotely sensed data: Practice, problems and perspectives. Parasitology Today, 14, 306–313.
- Hay, S. I., Snow, R. W., & Rogers, D. J. (1998b). Predicting malaria seasons in Kenya using multi-temporal meteorological satellite sensor data. Transactions of the Royal Society of Tropical Medicine & Hygiene, 92, 12–20.
- Heuvelink, G. B. M. & van Egmond, F. M. (2010). Space-time geostatistics for precision agriculture: A case study of NDVI mapping for a Dutch potato field. In M.A. Oliver (Ed.), Geostatistical applications for precision agriculture (pp. 117–137). Dordrecht, the Netherlands: Springer Netherlands.
- Hu, M. G., Li, Z. J., Wang, J. F., Jia, L., Liao, Y. L., Lai, S. J., …, & Yang, W. Z. (2012). Determinants of the incidence of hand, foot and mouth disease in China using geographically weighted regression models. PLoS One, 7(6), e38978.
- Jiang, T., Su, B., & Hartmann, H. (2007). Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961-2000. Geomorphology, 85, 143–154.
- Jephcote, C., & Chen, H. B. (2012). Environmental injustices of children's exposure to air pollution from road-transport within the model British multicultural city of Leicester: 2000-09. Science of the Total Environment, 414, 140–151.
- Kazembe, L. N., Kleinschmidt, I., Holtz, T. H., & Sharp, B. L. (2006). Spatial analysis and mapping of malaria risk in Malawi using point-referenced prevalence of infection data. International Journal of Health Geographics, 5, 41.
- Kleinschmidt, I., Sharp, B. L., Clarke, G. P. Y., Curtis, B., & Fraser, C. (2001). Use of generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in KwaZulu Natal, South Africa. American Journal of Epidemiology, 153, 1213–1221.
- Kulkarni, M. A., Desrochers, R. E., & Kerr, J. T. (2010). High resolution niche models of malaria vectors in northern Tanzania: A new capacity to predict malaria risk? PLoS ONE, 5, 2, e9396.
- Li, B., Zhu, J., & Tang, L. (2010). Spatial distribution characteristics of malaria in the Huaihe River Basin. Anhui Journal of Preventive Medicine, 16, 427–430.
- Li, Y., Wen, L., Li, C., Zhang, W., & Sun, H. (2013). Descriptive analysis of trends of malaria prevalence in China from 2006 to 2010. Chinese Journal of Public Health, 29, 263–265.
- Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J., & Wilson, M. L. (2000). Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Tropical Medicine & International Health, 5, 263–274.
- Lindsay, S. W., Parson, L., & Thomas, C. J. (1998). Mapping the ranges and relative abundances of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proceedings of the Royal Society of London B, 265, 847–854.
- Liu, J., Liu, S., & Fang, F. (2009). Ecological environment quality of Linxi River basin based on remote sensing technology. Environmental Science & Technology, 5, 47.
-
Lloyd, C. D. 2010. Local models for spatial analysis. Boca Raton, FL: Taylor & Francis.
10.1201/EBK1439829196 Google Scholar
- Lu, B., Charlton, M., Brunsdon, C., & Harris, P. (2015). The Minkowski approach for choosing the distance metric in geographically weighted regression. International Journal of Geographical Information Science, 30, 351–368.
- Lu, B., Charlton, M., Harris, P., & Fotheringham, A. S. (2014a). Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. International Journal of Geographical Information Science, 28, 660–681.
- Lu, G. Y., Zhou, S. S., Horstick, O., Wang, X., Liu, Y. L. & Muller, O. (2014b). Malaria outbreaks in China (1990-2013): A systematic review. Malaria Journal, 13, 269.
- Machault, V., Vignolles, C., Borchi, F., Vounatsou, P., Pages, F., Briolant, S., …, & Rogier, C. (2011). The use of remotely sensed environmental data in the study of malaria. Geospatial Health, 5, 151–168.
- McKinley, J. M., Ofterdinger, U., Young, M., Barsby, A., & Gavin, A. (2013). Investigating local relationships between trace elements in soils and cancer data. Spatial Statistics, 5: 25–41.
- Midekisa, A., Senay, G., Henebry, G. M., Semuniguse, P. & Wimberly, M. C. (2012). Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malaria Journal, 11, 165.
- Ministry of Public Security. 2011. National population statistics in counties and cities in the People's Republic of China. Beijing, China: Qunzhong Press.
- Nakaya, T., Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2005). Geographically weighted Poisson regression for disease association mapping. Statistics in Medicine, 24, 2695–2717.
- Nakaya, T., Fotheringham, A. S., Charlton, M. & Brunsdon, C. (2009). Semiparametric geographically weighted generalised linear modelling in GWR 4.0. Paper presented at the 10th International Conference on Geocomputation, Sydney, Australia.
- Ndiath, M. M., Cisse, B., Ndiaye, J. L., Gomis, J. F., Bathiery, O., Dia, A. T., & Faye, B. (2015). Application of geographically-weighted regression analysis to assess risk factors for malaria hotspots in Keur Soce health and demographic surveillance site. Malaria Journal, 14, 1- 11.
- Nygren, D., Stoyanov, C., Lewold, C., Mansson, F., Miller, J., Kamanga, A., & Shiff, C. J. (2014). Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: A time-series study. Malaria Journal, 13, 231.
- Páez, A., Uchida, T., & Miyamoto, K. (2002). A general framework for estimation and inference of geographically weighted regression models: 1, Location-specific kernel bandwidths and a test for locational heterogeneity. Environment & Planning A, 34, 733–754.
- Pasculli, A., Palermi, S., Sarra, A., Piacentini, T. & Miccadei, E. (2014). A modelling methodology for the analysis of radon potential based on environmental geology and geographically weighted regression. Environmental Modelling & Software, 54: 165–181.
- Peterson, A. T. (2009). Shifting suitability for malaria vectors across Africa with warming climates. BMC Infectious Diseases, 9(1), 1.
- Pigott, D. M., Golding, N., Mylne, A., Huang, Z., Henry, A. J., Weiss, D. J., …, & Hay, S. I. (2014). Mapping the zoonotic niche of Ebola virus disease in Africa. Elife, 3, e04395.
- Pirdavani, A., Bellemans, T., Brijs, T., Kochan, B., & Wets, G. (2014). Assessing the road safety impacts of a teleworking policy by means of geographically weighted regression method. Journal of Transport Geography, 39, 96–110.
- Rahman, M. Z., Roytman, L., Kadik, A., & Rosy, D. A. (2014). Environmental data analysis and remote sensing for early detection of dengue and malaria. In S. O. Southern, M. A. Mentzer, I. Rodriguez-Chavez, & V. E. Wotring (eds.), Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring IV (91121C-1). Bellingham, SPIE Proceedings Vol. 9112.
- Sattler, M. A., Mtasiwa, D., Kiama, M., Premji, Z., Tanner, M., Killeen, G. F., & Lengeler, C. (2005). Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malaria Journal, 4, 4.
- Schultz, P. A., & Halpert, M. S. (1993). Global correlation of temperature, NDVI and precipitation. Advances in Space Research, 13, 277–280.
- Su, S. L., Xiao, R., & Zhang, Y. (2012). Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Applied Geography, 32, 360–375.
- Tatem, A. J., Gething, P. W., Smith, D. L., & Hay, S. I. (2013). Urbanization and the global malaria recession. Malaria Journal, 12, 133.
- Tatem, A. J., Goetz, S. J., & Hay, S. I. (2004). Terra and Aqua: New data for epidemiology and public health. International Journal of Applied Earth Observations & Geoinformation, 6(1): 33–46.
- Thomas, C. J. & Lindsay, S. W. (2000). Local-scale variation in malaria infection amongst rural Gambian children estimated by satellite remote sensing. Transactions of the Royal Society of Tropical Medicine & Hygiene, 94, 159–163.
- Tian, F., Qiu, G. Y., Yang, Y. H., Xiong, Y. J., & Wang, P. (2012). Studies on the relationships between land surface temperature and environmental factors in an inland river catchment based on geographically weighted regression and MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 5, 687–698.
- Utzinger, J., Tozan, Y., Doumani F., & Singer, B. H. (2002). The economic payoffs of integrated malaria control in the Zambian copperbelt between 1930 and 1950. Tropical Medicine & International Health, 7, 657–677.
- van Lieshout, M., Kovats, R. S., Livermore, M. T. J., & Martens, P. (2004). Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Global Environmental Change-Human & Policy Dimensions, 14, 87–99.
- Videras, J. (2014). Exploring spatial patterns of carbon emissions in the USA: A geographically weighted regression approach. Population & Environment, 36, 137–154.
- Wang, J. F., Liu, X., Christakos, G., Liao, Y. L., Gu, X., & Zheng, X. Y. (2010). Assessing local determinants of neural tube defects in the Heshun Region, Shanxi Province, China. BMC Public Health, 10, 52.
- Wang, P., Wei, X., & Qian, Y. (2011a). Quality evaluation and time sequential analysis of eco-environment at multi-scales in Fen River Basin. Remote Sensing Technology & Application, 26, 798–807.
- Wang, S. X., Yao, Y., & Zhou, Y. (2014). Analysis of ecological quality of the environment and influencing factors in China during 2005-2010. International Journal of Environmental Research & Public Health, 11, 1673–1693.
- Wang, Y. Y., Kockelman, K. M., & Wang, X. K. (2011b). Anticipation of land use change through use of geographically weighted regression models for discrete response. Transportation Research Record, 2245, 111–123.
- Wayant, N. M., Maldonado, D., de Arias, A. R., Cousiño, B., & Goodin, D. G. (2010). Correlation between normalized difference vegetation index and malaria in a subtropical rain forest undergoing rapid anthropogenic alteration. Geospatial Health, 4(2): 179–190.
- Weiss, D. J., Bhatt, S., Mappin, B., Van Boeckel, T. P., Smith, D. L., Hay, S. I., & Gething, P. W. (2014). Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: A high-resolution spatiotemporal prediction. Malaria Journal 13: 171.
- Wimberly, M. C., Midekisa, A., Semuniguse, P., Teka, H., Henebry, G. M., Chuang, T. W., & Senay, G. B. (2012). Spatial synchrony of malaria outbreaks in a highland region of Ethiopia. Tropical Medicine & International Health, 17, 1192–1201.
- Woodworth, B. L., Atkinson, C. T., LaPointe, D. A., Hart, P. J., Spiegel, C. S., Tweed, E. J., Henneman, C., LeBrun, J., Denette, T., DeMots, R., Kozar, K. L., Triglia, D., Lease, D., Gregor, A., Smith, T., & Duffy, D. (2005). Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proceedings of the National Academy of Sciences, USA, 102, 1531–1536.
- Yang, G. J., Tanner, M., Utzinger, J., Malone, J. B., Bergquist, R., Chan, E. Y. Y., Gao, Q., & Zhou, X. N., (2012). Malaria surveillance-response strategies in different transmission zones of the People's Republic of China: Preparing for climate change. Malaria Journal, 11, 426.
- Yao, Y. H., & Zhang, B. P. (2013). MODIS-based estimation of air temperature of the Tibetan Plateau. Journal of Geographical Sciences, 23, 627–640.
- Yrigoyen, C. C., García, I., & Vicéns, J. (2007). Modeling spatial variations in household disposable income with geographically weighted regression. Munich, Germany: University Library of Munich Personal RePEc Archive No. 1682.
- Zhang, H., Su, Y., Zhou, G., Liu, Y., Cui, J., & Wang, Z. (2007). Re-emerging malaria in Yongcheng city of Henan Province (in Chinese). Chinese Journal of Vector Biological Control, 18, 42–44.
- Zhang, W. Y., Wang, L. P., Fang, L. Q., Ma, J. Q., Xu, Y. F., Jiang, J. F., …, & Cao, W. (2008). Spatial analysis of malaria in Anhui province, China. Malaria Journal, 7, 206.
- Zhou, S., Wang, Q., & Li, Y. (2011). Malaria situation in the People's Republic of China in 2010. Chinese Journal of Parasitology & Parasitic Diseases, 29, 401–403.
- Zhu, J., Tang, L., Li, B., Zhang, G., Wu, S., & Chang, F. (2007). The relationship between malaria endemic and normalized differential vegetation index in Huaihe River valley. International Journal of Medical Parasite Diseases, 34, 3, 122–124.