HLA/MHC and KIR characterization in humans and non-human primates using Oxford Nanopore Technologies and Pacific Biosciences sequencing platforms
Corresponding Author
Jesse Bruijnesteijn
Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
Correspondence
Jesse Bruijnesteijn, Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre 2288 GJ Rijswijk, The Netherlands.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Jesse Bruijnesteijn
Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
Correspondence
Jesse Bruijnesteijn, Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre 2288 GJ Rijswijk, The Netherlands.
Email: [email protected]
Search for more papers by this authorThis review was invited and edited by the Reviews Editor Katharina Fleischhauer.
Abstract
The gene products of the HLA/MHC and KIR multigene families are important modulators of the immune system and are associated with health and disease. Characterization of the genes encoding these receptors has been integrated into different biomedical applications, including transplantation and reproduction biology, immune therapies and in fundamental research into disease susceptibility or resistance. Conventional short-read sequencing strategies have shown their value in high throughput typing, but are insufficient to uncover the entire complexity of the highly polymorphic HLA/MHC and KIR gene systems. The implementation of single-molecule and real-time sequencing platforms, offered by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), revolutionized the fields of genomics and transcriptomics. Using fundamentally distinct principles, these platforms generate long-read data that can unwire the plasticity of the HLA/MHC and KIR genes, including high-resolution characterization of genes, alleles, phased haplotypes, transcription levels and epigenetics modification patterns. These insights might have profound clinical relevance, such as improved matching of donors and patients in clinical transplantation, but could also lift disease association studies to a higher level. Even more, a comprehensive characterization may refine animal models in preclinical studies. In this review, the different HLA/MHC and KIR characterization approaches using PacBio and ONT platforms are described and discussed.
CONFLICT OF INTEREST
The author declares no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- 1Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009; 54(1): 15-39. doi:10.1038/jhg.2008.5
- 2Wende H, Colonna M, Ziegler A, Volz A. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.4. Mamm Genome. 1999; 10(2): 154-160. doi:10.1007/s003359900961
- 3De Re V, Caggiari L, De Zorzi M, et al. Genetic diversity of the KIR/HLA system and outcome of patients with metastatic colorectal cancer treated with chemotherapy. PLoS One. 2014; 9(1):e84940. doi:10.1371/journal.pone.0084940
- 4Leone P, De Re V, Vacca A, Dammacco F, Racanelli V. Cancer treatment and the KIR-HLA system: an overview. Clin Exp Med. 2017; 17(4): 419-429. doi:10.1007/s10238-017-0455-4
- 5Kulkarni S, Martin MP, Carrington M. The yin and Yang of HLA and KIR in human disease. Semin Immunol. 2008; 20(6): 343-352. doi:10.1016/j.smim.2008.06.003
- 6Umemura T, Joshita S, Saito H, et al. KIR/HLA genotypes confer susceptibility and progression in patients with autoimmune hepatitis. JHEP Rep. 2019; 1(5): 353-360. doi:10.1016/j.jhepr.2019.09.003
- 7Augusto DG, Lobo-Alves SC, Melo MF, Pereira NF, Petzl-Erler ML. Activating KIR and HLA Bw4 ligands are associated to decreased susceptibility to pemphigus Foliaceus, an autoimmune blistering skin disease. PLoS One. 2012; 7(7):e39991. doi:10.1371/journal.pone.0039991
- 8Littera R, Piredda G, Argiolas D, et al. KIR and their HLA class I ligands: two more pieces towards completing the puzzle of chronic rejection and graft loss in kidney transplantation. PLoS One. 2017; 12(7):e0180831. doi:10.1371/journal.pone.0180831
- 9Hsu KC, Keever-Taylor CA, Wilton A, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood. 2005; 105(12): 4878-4884. doi:10.1182/blood-2004-12-4825
- 10Hiby SE, Apps R, Sharkey AM, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. 2010; 120(11): 4102-4110. doi:10.1172/jci43998
- 11Parham P, Lomen CE, Lawlor DA, et al. Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci. 1988; 85(11): 4005-4009. doi:10.1073/pnas.85.11.4005
- 12Howard CA, Fernandez-Vina MA, Appelbaum FR, et al. Recommendations for donor human leukocyte antigen assessment and matching for allogeneic stem cell transplantation: consensus opinion of the blood and marrow transplant clinical trials network (BMT CTN). Biol Blood Marrow Transplant. 2015; 21(1): 4-7. doi:10.1016/j.bbmt.2014.09.017
- 13Engen RM, Jedraszko AM, Conciatori MA, Tambur AR. Substituting imputation of HLA antigens for high-resolution HLA typing: evaluation of a multiethnic population and implications for clinical decision making in transplantation. Am J Transplant. 2021; 21(1): 344-352. doi:10.1111/ajt.16070
- 14Ljunggren HG, Kärre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today. 1990; 11(7): 237-244. doi:10.1016/0167-5699(90)90097-s
- 15Frazier WR, Steiner N, Hou L, Dakshanamurthy S, Hurley CK. Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C ligand. J Immunol. 2013; 190(12): 6198-6208. doi:10.4049/jimmunol.1300464
- 16Pando MJ, Gardiner CM, Gleimer M, McQueen KL, Parham P. The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1. J Immunol. 2003; 171(12): 6640-6649. doi:10.4049/jimmunol.171.12.6640
- 17Knorr DA, Bachanova V, Verneris MR, Miller JS. Clinical utility of natural killer cells in cancer therapy and transplantation. Semin Immunol. 2014; 26(2): 161-172. doi:10.1016/j.smim.2014.02.002
- 18Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine. 2020; 59:102975. doi:10.1016/j.ebiom.2020.102975
- 19Bruijnesteijn J, van der Wiel MKH, Swelsen WTN, et al. Human and rhesus macaque KIR haplotypes defined by their transcriptomes. J Immunol. 2018; 200(5): 1692-1701. doi:10.4049/jimmunol.1701480
- 20Otting N, de Vos-Rouweler AJ, Heijmans CM, de Groot NG, Doxiadis GG, Bontrop RE. MHC class I a region diversity and polymorphism in macaque species. Immunogenetics. 2007; 59(5): 367-375. doi:10.1007/s00251-007-0201-2
- 21Rajalingam R, Hong M, Adams EJ, Shum BP, Guethlein LA, Parham P. Short KIR haplotypes in pygmy chimpanzee (bonobo) resemble the conserved framework of diverse human KIR haplotypes. J Exp Med. 2001; 193(1): 135-146. doi:10.1084/jem.193.1.135
- 22Bruijnesteijn J, de Groot N, van der Wiel MKH, et al. Unparalleled rapid evolution of <em>KIR</em> genes in rhesus and Cynomolgus macaque populations. J Immunol. 2020; 204(7): 1770. doi:10.4049/jimmunol.1901140
- 23Bruijnesteijn J, de Groot NG, Otting N, et al. Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics. 2020; 72(1–2): 37-47. doi:10.1007/s00251-019-01135-8
- 24Robinson J, Guethlein LA, Maccari G, et al. Nomenclature for the KIR of non-human species. Immunogenetics. 2018; 70(9): 571-583. doi:10.1007/s00251-018-1064-4
- 25Marsh SG, Parham P, Dupont B, et al. Killer-cell immunoglobulin-like receptor (KIR) nomenclature report, 2002. Hum Immunol. 2003; 64(6): 648-654. doi:10.1016/s0198-8859(03)00067-3
- 26Bodmer JG, Marsh SG, Albert ED, et al. Nomenclature for factors of the HLA system, 1996. Tissue Antigens. 1997; 49(3 Pt 2): 297-321. doi:10.1111/j.1399-0039.1997.tb02759.x
- 27de Groot NG, Otting N, Maccari G, et al. Nomenclature report 2019: major histocompatibility complex genes and alleles of great and small ape and old and New World monkey species. Immunogenetics. 2020; 72(1): 25-36. doi:10.1007/s00251-019-01132-x
- 28Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinf. 2015; 13(5): 278-289. doi:10.1016/j.gpb.2015.08.002
- 29Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016; 17(1): 239. doi:10.1186/s13059-016-1103-0
- 30Weirather JL, de Cesare M, Wang Y, et al. Comprehensive comparison of Pacific biosciences and Oxford Nanopore technologies and their applications to transcriptome analysis. F1000Res. 2017; 6(100): 100. doi:10.12688/f1000research.10571.2
- 31Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA, Albertsen M. Assessing long-read sequencing with Nanopore R9, R10 and PacBio CCS to obtain high-quality metagenome assembled genomes from complex microbial communities. bioRxiv. 2021: 10.1101/2021.10.27.466057
- 32Pardo-Palacios F, Reese F, Carbonell-Sala S, et al. Systematic assessment of long-read RNA-seq methods for transcript identification and quantification. Research square. 2021.
- 33Lang D, Zhang S, Ren P, et al. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific biosciences sequel II system and ultralong reads of Oxford Nanopore. GigaScience. 2020; 9(12):1-7. 10.1093/gigascience/giaa123.
- 34Bravo-Egana V, Sanders H, Chitnis N. New challenges, new opportunities: next generation sequencing and its place in the advancement of HLA typing. Hum Immunol. 2021; 82(7): 478-487. doi:10.1016/j.humimm.2021.01.010
- 35Adams SD, Barracchini KC, Chen D, et al. Ambiguous allele combinations in HLA class I and class II sequence-based typing: when precise nucleotide sequencing leads to imprecise allele identification. J Transl Med. 2004; 2(1): 30. doi:10.1186/1479-5876-2-30
- 36Wiseman RW, Karl JA, Bimber BN, et al. Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nat Med. 2009; 15(11): 1322-1326. doi:10.1038/nm.2038
- 37Lebedeva TV, Ohashi M, Zannelli G, Cullen R, Yu N. Comprehensive approach to high-resolution KIR typing. Hum Immunol. 2007; 68(9): 789-796. doi:10.1016/j.humimm.2007.07.002
- 38Vilches C, Castaño J, Gómez-Lozano N, Estefanía E. Facilitation of KIR genotyping by a PCR-SSP method that amplifies short DNA fragments. Tissue Antigens. 2007; 70(5): 415-422. doi:10.1111/j.1399-0039.2007.00923.x
- 39Gómez-Lozano N, Vilches C. Genotyping of human killer-cell immunoglobulin-like receptor genes by polymerase chain reaction with sequence-specific primers: an update. Tissue Antigens. 2002; 59(3): 184-193. doi:10.1034/j.1399-0039.2002.590302.x
- 40Middleton D, Gonzelez F. The extensive polymorphism of KIR genes. Immunology. 2010; 129(1): 8-19. doi:10.1111/j.1365-2567.2009.03208.x
- 41Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE. The extreme plasticity of killer cell Ig-like receptor (KIR) haplotypes differentiates rhesus macaques from humans. Eur J Immunol. 2011; 41(9): 2719-2728. doi:10.1002/eji.201141621
- 42Shiina T, Suzuki S, Ozaki Y, et al. Super high resolution for single molecule-sequence-based typing of classical HLA loci at the 8-digit level using next generation sequencers. Tissue Antigens. 2012; 80(4): 305-316. doi:10.1111/j.1399-0039.2012.01941.x
- 43Nii-Trebi NI, Matsuoka S, Kawana-Tachikawa A, et al. Super high-resolution single-molecule sequence-based typing of HLA class I alleles in HIV-1 infected individuals in Ghana. PLoS One. 2022; 17(6):e0269390. doi:10.1371/journal.pone.0269390
- 44Voorter CE, Palusci F, Tilanus MG. Sequence-based typing of HLA: an improved group-specific full-length gene sequencing approach. Methods Mol Biol. 2014; 1109:101-114. doi:10.1007/978-1-4614-9437-9_7
- 45Detter JC, Johnson SL, Bishop-Lilly KA, et al. In: RP Schaudies, ed. Nucleic acid sequencing for characterizing infectious and/or novel agents in complex samples. Woodhead Publishing; 2014: 3-53.
- 46Bruijnesteijn J, van der Wiel MKH, Swelsen WTN, et al. Human and rhesus macaque KIR haplotypes defined by their transcriptomes. J Immunol. 2018; 200(5):1692-1701. doi:10.4049/jimmunol.1701480
- 47de Groot NG, de Groot N, de Vos-Rouweler AJM, Louwerse A, Bruijnesteijn J, Bontrop RE. Dynamic evolution of Mhc haplotypes in cynomolgus macaques of different geographic origins. Immunogenetics. 2022; 74(4): 409-429. doi:10.1007/s00251-021-01249-y
- 48Bruijnesteijn J, de Groot N, van der Wiel MKH, et al. Unparalleled rapid evolution of KIR genes in rhesus and Cynomolgus macaque populations. J Immunol. 2020; 204(7): 1770-1786. doi:10.4049/jimmunol.1901140
- 49Shortreed CG, Wiseman RW, Karl JA, et al. Characterization of 100 extended major histocompatibility complex haplotypes in Indonesian cynomolgus macaques. Immunogenetics. 2020; 72(4): 225-239. doi:10.1007/s00251-020-01159-5
- 50Westbrook CJ, Karl JA, Wiseman RW, et al. No assembly required: full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum Immunol. 2015; 76(12): 891-896. doi:10.1016/j.humimm.2015.03.022
- 51Johansson T, Koskela S, Yohannes DA, Partanen J, Saavalainen P. Targeted RNA-based Oxford Nanopore sequencing for typing 12 classical HLA genes. Front Genet. 2021; 12:635601. doi:10.3389/fgene.2021.635601
- 52Stockton JD, Nieto T, Wroe E, et al. Rapid, highly accurate and cost-effective open-source simultaneous complete HLA typing and phasing of class I and II alleles using nanopore sequencing. HLA. 2020; 96(2): 163-178. doi:10.1111/tan.13926
- 53Cornaby C, Montgomery MC, Liu C, Weimer ET. Unique molecular identifier-based high-resolution HLA typing and transcript quantitation using long-read sequencing. Front Genet. 2022; 13. doi:10.3389/fgene.2022.901377
- 54Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010; 11(5): 345-355. doi:10.1038/nrg2776
- 55Martinez NM, Lynch KW. Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol Rev. 2013; 253(1): 216-236.
- 56Döhring C, Samaridis J, Colonna M. Alternatively spliced forms of human killer inhibitory receptors. Immunogenetics. 1996; 44(3): 227-230. doi:10.1007/bf02602590
- 57Goodridge JP, Lathbury LJ, Steiner NK, et al. Three common alleles of KIR2DL4 (CD158d) encode constitutively expressed, inducible and secreted receptors in NK cells. Eur J Immunol. 2007; 37(1): 199-211. doi:10.1002/eji.200636316
- 58Voorter CE, Gerritsen KE, Groeneweg M, Wieten L, Tilanus MG. The role of gene polymorphism in HLA class I splicing. Int J Immunogenet. 2016; 43(2): 65-78. doi:10.1111/iji.12256
- 59Curran MD, Williams F, Little AM, Rima BK, Madrigal JA, Middleton D. Aberrant splicing of intron 1 creates a novel null HLA-B*1501 allele. Tissue Antigens. 1999; 53(3): 244-252. doi:10.1034/j.1399-0039.1999.530304.x
- 60Ishitani A, Geraghty DE. Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc Natl Acad Sci USA. 1992; 89(9): 3947-3951. doi:10.1073/pnas.89.9.3947
- 61Hviid TVF, Hylenius S, Rørbye C, Nielsen LG. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics. 2003; 55(2): 63-79. doi:10.1007/s00251-003-0547-z
- 62Xu X, Zhou Y, Wei H. Roles of HLA-G in the maternal-fetal immune microenvironment. Front Immunol. 2020; 11. doi:10.3389/fimmu.2020.592010
- 63Bruijnesteijn J, van der Wiel MKH, de Groot N, et al. Extensive alternative splicing of KIR transcripts. Front Immunol. 2018; 9. doi:10.3389/fimmu.2018.02846
- 64Briata P, Radka SF, Sartoris S, Lee JS. Alternative splicing of HLA-DQB transcripts and secretion of HLA-DQ beta-chain proteins: allelic polymorphism in splicing and polyadenylylation sites. Proc Natl Acad Sci USA. 1989; 86(3): 1003-1007. doi:10.1073/pnas.86.3.1003
- 65Boti MA, Adamopoulos PG, Tsiakanikas P, Scorilas A. Nanopore sequencing unveils diverse transcript variants of the epithelial cell-specific transcription factor Elf-3 in human malignancies. Genes. 2021; 12(6): 839.
- 66de Jong LC, Cree S, Lattimore V, et al. Nanopore sequencing of full-length BRCA1 mRNA transcripts reveals co-occurrence of known exon skipping events. Breast Cancer Res. 2017; 19(1): 127. doi:10.1186/s13058-017-0919-1
- 67Chitnis NS, Shieh M, Monos D. Regulatory noncoding RNAs and the major histocompatibility complex. Hum Immunol. 2021; 82(7): 532-540. doi:10.1016/j.humimm.2020.06.005
- 68Wright PW, Huehn A, Cichocki F, et al. Identification of a KIR antisense lncRNA expressed by progenitor cells. Genes Immun. 2013; 14(7): 427-433. doi:10.1038/gene.2013.36
- 69Li H, Xiong H-G, Xiao Y, et al. Long non-coding RNA LINC02195 as a regulator of MHC I molecules and favorable prognostic marker for head and neck squamous cell carcinoma. Frontiers. Oncology. 2020; 10. doi:10.3389/fonc.2020.00615
- 70Stickel N, Hanke K, Marschner D, et al. MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia. 2017; 31(12): 2732-2741. doi:10.1038/leu.2017.137
- 71Kulkarni S, Savan R, Qi Y, et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature. 2011; 472(7344): 495-498. doi:10.1038/nature09914
- 72Mayor NP, Robinson J, McWhinnie AJ, et al. HLA typing for the next generation. PLoS One. 2015; 10(5):e0127153. doi:10.1371/journal.pone.0127153
- 73Albrecht V, Zweiniger C, Surendranath V, et al. Dual redundant sequencing strategy: full-length gene characterisation of 1056 novel and confirmatory HLA alleles. HLA. 2017; 90(2): 79-87. doi:10.1111/tan.13057
- 74Turner TR, Hayhurst JD, Hayward DR, et al. Single molecule real-time DNA sequencing of HLA genes at ultra-high resolution from 126 international HLA and Immunogenetics workshop cell lines. HLA. 2018; 91(2): 88-101. doi:10.1111/tan.13184
- 75Suzuki S, Ranade S, Osaki K, et al. Reference grade characterization of polymorphisms in full-length HLA class I and II genes with short-read sequencing on the ION PGM system and long-reads generated by single molecule. Real-Time Sequencing on the PacBio Platform Front Immunol. 2018; 9(2294). doi:10.3389/fimmu.2018.02294
10.3389/fimmu.2018.02294 Google Scholar
- 76Ammar R, Paton TA, Torti D, Shlien A, Bader GD. Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Res. 2015; 4(17): 17. doi:10.12688/f1000research.6037.2
- 77Liu C, Xiao F, Hoisington-Lopez J, et al. Accurate typing of human leukocyte antigen class I genes by Oxford Nanopore sequencing. J Mol Diagn. 2018; 20(4): 428-435. doi:10.1016/j.jmoldx.2018.02.006
- 78Liu C, Yang X, Duffy BF, et al. High-resolution HLA typing by long reads from the R10. 3 Oxford nanopore flow cells. Hum Immunol. 2021; 82(4): 288-295.
- 79Matern BM, Olieslagers TI, Groeneweg M, et al. Long-read Nanopore sequencing validated for human leukocyte antigen class I typing in routine diagnostics. J Mol Diagn. 2020; 22(7): 912-919. doi:10.1016/j.jmoldx.2020.04.001
- 80Mosbruger TL, Dinou A, Duke JL, et al. Utilizing nanopore sequencing technology for the rapid and comprehensive characterization of eleven HLA loci; addressing the need for deceased donor expedited HLA typing. Hum Immunol. 2020; 81(8): 413-422. doi:10.1016/j.humimm.2020.06.004
- 81De Santis D, Truong L, Martinez P, D'Orsogna L. Rapid high-resolution HLA genotyping by MinION Oxford nanopore sequencing for deceased donor organ allocation. HLA. 2020; 96(2): 141-162. doi:10.1111/tan.13901
- 82Apps R, Meng Z, Del Prete GQ, Lifson JD, Zhou M, Carrington M. Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. J Immunol. 2015; 194(8): 3594-3600. doi:10.4049/jimmunol.1403234
- 83Björkström NK, Riese P, Heuts F, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. 2010; 116(19): 3853-3864. doi:10.1182/blood-2010-04-281675
- 84Santourlidis S, Trompeter H-I, Weinhold S, et al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol. 2002; 169(8): 4253-4261. doi:10.4049/jimmunol.169.8.4253
- 85Boegel S, Bukur T, Castle JC, Sahin U. In Silico typing of classical and non-classical HLA alleles from standard RNA-Seq reads. Methods Mol Biol. 2018; 1802:177-191. doi:10.1007/978-1-4939-8546-3_12
- 86Orenbuch R, Filip I, Comito D, Shaman J, Pe'er I, Rabadan R. arcasHLA: high-resolution HLA typing from RNAseq. Bioinformatics. 2020; 36(1): 33-40. doi:10.1093/bioinformatics/btz474
- 87Buchkovich ML, Brown CC, Robasky K, et al. HLAProfiler utilizes k-mer profiles to improve HLA calling accuracy for rare and common alleles in RNA-seq data. Genome Med. 2017; 9(1): 86. doi:10.1186/s13073-017-0473-6
- 88Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 2014; 30(23): 3310-3316. doi:10.1093/bioinformatics/btu548
- 89Sharon D, Tilgner H, Grubert F, Snyder M. A single-molecule long-read survey of the human transcriptome. Nat Biotechnol. 2013; 31(11): 1009-1014. doi:10.1038/nbt.2705
- 90Kohli M, Ho Y, Hillman DW, et al. Androgen receptor variant AR-V9 is Coexpressed with AR-V7 in prostate cancer metastases and predicts Abiraterone resistance. Clin Cancer Res. 2017; 23(16): 4704-4715. doi:10.1158/1078-0432.CCR-17-0017
- 91Tseng E, Tang H-T, AlOlaby RR, Hickey L, Tassone F. Altered expression of the FMR1 splicing variants landscape in premutation carriers. Biochim Biophys Acta Gene Rugul Mech. 2017; 1860(11): 1117-1126. doi:10.1016/j.bbagrm.2017.08.007
- 92Garalde DR, Snell EA, Jachimowicz D, et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018; 15(3): 201-206. doi:10.1038/nmeth.4577
- 93Oikonomopoulos S, Wang YC, Djambazian H, Badescu D, Ragoussis J. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci Rep. 2016; 6(1):31602. doi:10.1038/srep31602
- 94Stephenson W, Razaghi R, Busan S, Weeks KM, Timp W, Smibert P. Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genom. 2022; 2(2):100097. doi:10.1016/j.xgen.2022.100097
- 95Montgomery MC, Liu C, Petraroia R, Weimer ET. Using Nanopore whole-transcriptome sequencing for human leukocyte antigen genotyping and correlating donor human leukocyte antigen expression with flow Cytometric Crossmatch results. J Mol Diagn. 2020; 22(1): 101-110. doi:10.1016/j.jmoldx.2019.09.005
- 96Volden R, Palmer T, Byrne A, et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci. 2018; 115(39): 9726-9731. doi:10.1073/pnas.1806447115
- 97Cole C, Byrne A, Adams M, Volden R, Vollmers C. Complete characterization of the human immune cell transcriptome using accurate full-length cDNA sequencing. Genome Res. 2020; 30(4): 589-601. doi:10.1101/gr.257188.119
- 98Bowden R, Davies RW, Heger A, et al. Sequencing of human genomes with nanopore technology. Nat Commun. 2019; 10(1): 1869. doi:10.1038/s41467-019-09637-5
- 99Jain M, Koren S, Miga KH, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018; 36(4): 338-345. doi:10.1038/nbt.4060
- 100Shafin K, Pesout T, Lorig-Roach R, et al. Efficient de novo assembly of eleven human genomes using PromethION sequencing and a novel nanopore toolkit. bioRxiv. 2019:715722 10.1101/715722
- 101Michael TP, Jupe F, Bemm F, et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun. 2018; 9(1): 541. doi:10.1038/s41467-018-03016-2
- 102Giordano F, Aigrain L, Quail MA, et al. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. Sci Rep. 2017; 7(1): 3935. doi:10.1038/s41598-017-03996-z
- 103He Y, Luo X, Zhou B, et al. Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants. Nat Commun. 2019; 10(1): 4233. doi:10.1038/s41467-019-12174-w
- 104Bruijnesteijn J, de Groot NG, Bontrop RE. The genetic mechanisms driving diversification of the KIR gene cluster in primates. Front Immunol. 2020; 11:582804. doi:10.3389/fimmu.2020.582804
- 105Seo J-S, Rhie A, Kim J, et al. De novo assembly and phasing of a Korean human genome. Nature. 2016; 538(7624): 243-247. doi:10.1038/nature20098
- 106Koren S, Rhie A, Walenz BP, et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol. 2018; 36: 1174-1182. doi:10.1038/nbt.4277
- 107Houwaart T, Scholz S, Pollock NR, et al. Complete sequences of six major histocompatibility complex haplotypes, including all the major MHC class II structures. bioRxiv. 2022. 10.1101/2022.04.28.489875
- 108Garg S, Fungtammasan A, Carroll A, et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat Biotechnol. 2021; 39(3): 309-312. doi:10.1038/s41587-020-0711-0
- 109Chin C-S, Wagner J, Zeng Q, et al. A diploid assembly-based benchmark for variants in the major histocompatibility complex. Nat Commun. 2020; 11(1): 4794. doi:10.1038/s41467-020-18564-9
- 110Zhang JY, Roberts H, Flores DSC, et al. Using de novo assembly to identify structural variation of eight complex immune system gene regions. PLoS Comput Biol. 2021; 17(8):e1009254. doi:10.1371/journal.pcbi.1009254
- 111Roe D, Kuang R. Accurate and efficient KIR gene and Haplotype inference from genome sequencing reads with novel K-mer signatures. Front Immunol. 2020; 11:583013. doi:10.3389/fimmu.2020.583013
- 112Roe D, Vierra-Green C, Pyo CW, et al. Revealing complete complex KIR haplotypes phased by long-read sequencing technology. Genes Immun. 2017; 18(3): 127-134. doi:10.1038/gene.2017.10
- 113Tsai Y-C, Greenberg D, Powell J, et al. Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT sequencing of repeat-expansion disease causative genomic regions. bioRxiv. 2017:203919 10.1101/203919
- 114Gilpatrick T, Lee I, Graham JE, et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat Biotechnol. 2020; 38(4): 433-438. doi:10.1038/s41587-020-0407-5
- 115Bruijnesteijn J, van der Wiel M, de Groot NG, Bontrop RE. Rapid characterization of complex killer cell immunoglobulin-like receptor (KIR) regions using Cas9 enrichment and Nanopore sequencing. Front Immunol. 2021; 12. doi:10.3389/fimmu.2021.722181
- 116Payne A, Holmes N, Clarke T, Munro R, Debebe B, Loose M. Nanopore adaptive sequencing for mixed samples, whole exome capture and targeted panels. bioRxiv. 2020. doi:10.1101/2020.02.03.926956
10.1101/2020.02.03.926956 Google Scholar
- 117Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013; 14(3): 204-220. doi:10.1038/nrg3354
- 118Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell. 2018; 71(6): 882-895. doi:10.1016/j.molcel.2018.08.008
- 119Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010; 31(1): 27-36. doi:10.1093/carcin/bgp220
- 120Attwood JT, Yung RL, Richardson BC. DNA methylation and the regulation of gene transcription. Cell Mol Life Sci. 2002; 59(2): 241-257. doi:10.1007/s00018-002-8420-z
- 121van den Elsen P. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol. 2011; 2. doi:10.3389/fimmu.2011.00048
- 122Luo N, Nixon MJ, Gonzalez-Ericsson PI, et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat Commun. 2018; 9(1): 248. doi:10.1038/s41467-017-02630-w
- 123Liu Y, Kuick R, Hanash S, Richardson B. DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors. Clin Immunol. 2009; 130(2): 213-224. doi:10.1016/j.clim.2008.08.009
- 124Chan HW, Kurago ZB, Stewart CA, et al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J Exp Med. 2003; 197(2): 245-255. doi:10.1084/jem.20021127
- 125Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005; 33(18): 5868-5877. doi:10.1093/nar/gki901
- 126Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021; 39(11): 1348-1365. doi:10.1038/s41587-021-01108-x
- 127 Pacific Biosciences Compatible Software. Pacific Biosciences; 2019. https://www.pacb.com/connect/datasets/. Accessed August 1, 2021.
- 128Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020; 21(1): 30. doi:10.1186/s13059-020-1935-5
- 129Amarasinghe SL, Ritchie ME, Gouil Q. Long-read-tools.Org: an interactive catalogue of analysis methods for long-read sequencing data. GigaScience. 2021; 10(2):1-7. doi:10.1093/gigascience/giab003
- 130Chen J, Madireddi S, Nagarkar D, et al. In silico tools for accurate HLA and KIR inference from clinical sequencing data empower immunogenetics on individual-patient and population scales. Brief Bioinform. 2021; 22(3):bbaa223. doi:10.1093/bib/bbaa223
- 131Norman PJ, Hollenbach JA, Nemat-Gorgani N, et al. Defining KIR and HLA class I genotypes at highest resolution via high-throughput sequencing. Am J Hum Genet. 2016; 99(2): 375-391. doi:10.1016/j.ajhg.2016.06.023
- 132Dilthey AT, Mentzer AJ, Carapito R, et al. HLA*LA—HLA typing from linearly projected graph alignments. Bioinformatics. 2019; 35(21): 4394-4396. doi:10.1093/bioinformatics/btz235