Early visual modulation and selection predict saccadic timing during visual search: An ERP study
Corresponding Author
Ryan V. Ringer
Department of Psychology, University of Colorado Denver, Denver, Colorado, USA
Correspondence
Ryan V. Ringer, Department of Psychology, University of Colorado Denver, Campus Box 173, PO Box 173364, Denver, CO 80217-3364, USA.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing - original draft, Writing - review & editing
Search for more papers by this authorCarly J. Leonard
Department of Psychology, University of Colorado Denver, Denver, Colorado, USA
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Ryan V. Ringer
Department of Psychology, University of Colorado Denver, Denver, Colorado, USA
Correspondence
Ryan V. Ringer, Department of Psychology, University of Colorado Denver, Campus Box 173, PO Box 173364, Denver, CO 80217-3364, USA.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing - original draft, Writing - review & editing
Search for more papers by this authorCarly J. Leonard
Department of Psychology, University of Colorado Denver, Denver, Colorado, USA
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
Saccadic eye movements, a critical aspect of real-world visual behavior, are preceded by an initial accumulation of visual information followed by the selection of a single location to move one's eyes. However, it is currently unclear how each of these stages uniquely affects saccadic timing. In this study, participants searched for a contour integration target while EEG was used to measure posterior cortical activity between search display onset and first saccade initiation. The goal was to determine whether saccade timing could be attributed to differences in early ERP amplitudes, with the P1 reflecting the magnitude of early perceptual information accumulation and the N1 reflecting the strength of selection leading to the saccadic decision. EOG was used to measure saccade timing, and trials were divided into fast, middle, and slow bins. The N1 response was smallest in the slow saccade tertile, relative to both the fast and middle tertiles, suggesting weak selection. In contrast, the P1 response was largest for this same slow saccadic tertile relative to the middle saccadic tertile, suggesting vigorous information accumulation. Therefore, delays in saccadic behavior may occur when the visual system is overwhelmed with visual input, thus increasing the time to reach a saccadic decision. These findings reconcile models of eye movement behavior which often prioritize either the impact of information accrual or selection, rather than regarding both as an integrated whole.
CONFLICT OF INTEREST STATEMENT
We have no known conflict of interest to disclose.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Acunzo, D. J., & Melcher, D. P. (2021). Changes in neural activity around the time of saccades: Separate contributions of visual and non-visual signals on MEG alpha and theta band activity. PsyArXiv, 1–50 https://doi.org/10.31234/osf.io/c29xm
10.31234/osf.io/c29xm Google Scholar
- Andrews, T. J., & Coppola, D. M. (1999). Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments. Vision Research, 39(17), 2947–2953. https://doi.org/10.1016/S0042-6989(99)00019-X
- Anllo-Vento, L., Luck, S. J., & Hillyard, S. A. (1998). Spatio-temporal dynamics of attention to color: Evidence from human electrophysiology. Human Brain Mapping, 6(4), 216–238.
- Baldwin, A. S., Kenwood, M., & Hess, R. F. (2020). Integration of contours defined by second-order contrast-modulation of texture. Vision Research, 176, 1–15. https://doi.org/10.1016/j.visres.2020.07.003
- Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv, preprint arXiv1506.04967, 1–27.
- Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version1.1-7. http://CRAN.R-project.org/package=lme4
- Butler, P. D., Abeles, I. Y., Silverstein, S. M., Dias, E. C., Weiskopf, N. G., Calderone, D. J., & Sehatpour, P. (2013). An event-related potential examination of contour integration deficits in schizophrenia. Frontiers in Psychology, 4, 1–12. https://doi.org/10.3389/fpsyg.2013.00132
- Cajar, A., Schneeweiß, P., Engbert, R., & Laubrock, J. (2016). Coupling of attention and saccades when viewing scenes with central and peripheral degradation. Journal of Vision, 16(2), 1–19. https://doi.org/10.1167/16.2.8
- Carpenter, R. H. S. (1981). Oculomotor proctrastination. In D. F. Fisher, R. A. Monty, & J. W. Senders (Eds.), Eye movements: Cognition and visual perception (pp. 237–246). Lawrence Erlbaum.
- Carpenter, R. H. S. (2004). Contrast, probability, and saccadic latency: Evidence for independence of detection and decision. Current Biology, 14(17), 1576–1580. https://doi.org/10.1016/j.cub.2004.08.058
- Carpenter, R. H. S., Reddi, B. A., & Anderson, A. J. (2009). A simple two-stage model predicts response time distributions. Journal of Physiology, 587(16), 4051–4062. https://doi.org/10.1113/jphysiol.2009.173955
- Carrasco, M., Williams, P. E., & Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement. Journal of Vision, 2(6), 467–479. https://doi.org/10.1167/2.6.4
- Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67(2), 319–333. https://doi.org/10.1037/0022-3514.67.2.319
- Castelhano, M. S., & Henderson, J. M. (2008). The influence of color on the perception of scene gist. Journal of Experimental Psychology. Human Perception and Performance, 34(3), 660–675.
- Coco, M. I., Nuthmann, A., & Dimigen, O. (2020). Fixation-related brain potentials during semantic integration of object–scene information. Journal of Cognitive Neuroscience, 32(4), 571–589. https://doi.org/10.1162/jocn_a_01504
- Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.
- Deubel, H. (2008). The time course of presaccadic attention shifts. Psychological Research, 72(6), 630–640. https://doi.org/10.1007/s00426-008-0165-3
- Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837. https://doi.org/10.1016/0042-6989(95)00294-4
- Dimigen, O., & Ehinger, B. V. (2021). Regression-based analysis of combined EEG and eye-tracking data: Theory and applications. Journal of Vision, 21(1), 1–30. https://doi.org/10.1167/jov.21.1.3
- Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225–234. https://doi.org/10.1016/0013-4694(96)95711-9
- Eimer, M. (2014). The time course of spatial attention: Insights from event-related brain potentials. In A. Nobre & S. Kastner (Eds.), The Oxford handbook of attention (Vol. online edn, pp. 1–20). Oxford Academic Press.
- Eimer, M., Van Velzen, J., Gherri, E., & Press, C. (2007). ERP correlates of shared control mechanisms involved in saccade preparation and in covert attention. Brain Research, 1135, 154–166. https://doi.org/10.1016/j.brainres.2006.12.007
- Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112(4), 777–813.
- Findlay, J., & Walker, R. (1999). A model of saccade generation based on parallel processing and competitive inhibition. Behavioral and Brain Sciences, 22(4), 661–721.
- Fischer, T., Graupner, S.-T., Velichkovsky, B. M., & Pannasch, S. (2013). Attentional dynamics during free picture viewing: Evidence from oculomotor behavior and electrocortical activity. Frontiers in Systems Neuroscience, 7(17), 1–9. https://doi.org/10.3389/fnsys.2013.00017
- Fu, S., Caggiano, D. M., Greenwood, P. M., & Parasuraman, R. (2005). Event-related potentials reveal dissociable mechanisms for orienting and focusing visuospatial attention. Cognitive Brain Research, 23(2–3), 341–353. https://doi.org/10.1016/j.cogbrainres.2004.11.014
- Fu, S., Fan, S., Chen, L., & Zhuo, Y. (2001). The attentional effects of peripheral cueing as revealed by two event-related potential studies. Clinical Neurophysiology, 112(1), 172–185. https://doi.org/10.1016/S1388-2457(00)00500-9
- Goldberg, L. R. (2006). Doing it all Bass-Ackwards: The development of hierarchical factor structures from the top down. Journal of Research in Personality, 40(4), 347–358. https://doi.org/10.1016/j.jrp.2006.01.001
- Henderson, J. M., Chanceaux, M., & Smith, T. J. (2009). The influence of clutter on real-world scene search: Evidence from search efficiency and eye movements. Journal of Vision, 9(1), 1–32. https://doi.org/10.1167/9.1.32
- Henderson, J. M., & Luke, S. G. (2014). Stable individual differences in saccadic eye movements during reading, pseudoreading, scene viewing, and scene search. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1390–1400. https://doi.org/10.1037/a0036330
- Henderson, J. M., Nuthmann, A., & Luke, S. G. (2013). Eye movement control during scene viewing: Immediate effects of scene luminance on fixation durations. Journal of Experimental Psychology. Human Perception and Performance, 39(2), 318–322. https://doi.org/10.1037/a0031224
- Hermann, C. S., & Bosch, V. (2001). Gestalt perception modulates early visual processing. Neuroreport, 12(5), 901–904.
- Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57(6), 787–795. https://doi.org/10.3758/BF03206794
- Huber-Huber, C., Ditye, T., Fernandez, M. M., & Ansorge, U. (2016). Using temporally aligned event- related potentials for the investigation of attention shifts prior to and during saccades. Neuropsychologia, 92, 129–141. https://doi.org/10.1016/j.neuropsychologia.2016.03.035
- Hunt, A. R., Reuther, J., Hilchey, M. D., & Klein, R. M. (2019). The relationship between spatial attention and eye movements. Current Topics in Behavioral Neurosciences, 41, 255–278. https://doi.org/10.1007/7854_2019_95
- Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163–178.
- Khoe, W., Freeman, E., Woldorff, M. G., & Mangun, G. R. (2006). Interactions between attention and perceptual grouping in human visual cortex. Brain Research, 1078(1), 101–111. https://doi.org/10.1016/j.brainres.2005.12.083
- Kinchla, R. A., Chen, Z., & Evert, D. (1995). Precue effects in visual search: Data or resource limited? Perception & Psychophysics, 57, 441–450. https://doi.org/10.3758/BF03213070
- Kleiner, M., Brainard, D., & Pelli, D. G. (2007). What's new in Psychtoolbox-3? Perception, 36(14), 1–16.
- Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35(13), 1897–1916. https://doi.org/10.1016/0042-6989(94)00279-u
- Krebs, R. M., Boehler, C. N., Zhang, H. H., Schoenfeld, M. A., & Woldorff, M. G. (2012). Electrophysiological recordings in humans reveal reduced location-specific attentional-shift activity prior to recentering saccades. Journal of Neurophysiology, 107, 1393–1402. https://doi.org/10.1152/jn.00912.2010
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(1), 1–26.
- Legge, G. E., Rubin, G. S., & Luebker, A. (1987). Pyschophysics of reading—V. The role of contrast in normal vision. Vision Research, 27(7), 1165–1177. https://doi.org/10.1016/0042–6989(87)90028-9
- Li, H. H., Barbot, A., & Carrasco, M. (2016). Saccade preparation reshapes sensory tuning. Current Biology, 26, 1564–1570. https://doi.org/10.1016/j.cub.2016.04.028
- Lins, O. G., Picton, T. W., Berg, P., & Scherg, M. (1993). Ocular artifacts in EEG and event-related potentials I: Scalp topography. Brain Topography, 6, 51–63. https://doi.org/10.1007/BF01234127
- Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event- related potentials. Frontiers in Human Neuroscience, 8, 1–14. https://doi.org/10.3389/fnhum.2014.00213
- Loschky, L. C., McConkie, G. W., Yang, J., & Miller, M. E. (2005). The limits of visual resolution in natural scene viewing. Visual Cognition, 12(6), 1057–1092. https://doi.org/10.1080/13506280444000652
- Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 1, 64–87. https://doi.org/10.1006/cogp.1997.0660
10.1006/cogp.1997.0660 Google Scholar
- Luck, S. J., Heinze, H.-J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electrencephalography and Clinical Neurophysiology, 75(6), 528–542. https://doi.org/10.1016/0013-4694(90)90139-B
- Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology. Human Perception and Performance, 20(5), 1000–1014. https://doi.org/10.1037/0096-1523.20.5.1000
- Luck, S. J., Hillyard, S. A., Mouloua, M., Woldorff, M. G., Clark, V. P., & Hawkins, H. L. (1994). Effects of spatial cuing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. Journal of Experimental Psychology. Human Perception and Performance, 20(4), 887–904. https://doi.org/10.1037//0096-1523.20.4.887
- Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.
- Machilsen, B., Novitskiy, N., Vancleef, K., & Wagemans, J. (2011). Context modulates the ERP signature of contour integration. PLoS One, 6(9), e25151. https://doi.org/10.1371/journal.pone.0025151
- Madison, A., Touryan, J., Nonte, M., & Ries, A. (2022). The influence of spatial frequency and luminance on early visual processing: A fixation-related potentials approach. Journal of Vision, 22(14), 4421. https://doi.org/10.1167/jov.22.14.4421
10.1167/jov.22.14.4421 Google Scholar
- Markowitz, D. A., Shewcraft, R. A., Wong, Y. T., & Pesaran, B. (2011). Competition for visual selection in the oculomotor system. Journal of Neuroscience, 31(25), 9298–9306. https://doi.org/10.1523/JNEUROSCI.0908-11.2011
- Mathes, B., Trenner, D., & Fahle, M. (2006). The electrophysiological correlate of contour integration is modulated by task demands. Brain Research, 1114(9), 98–112. https://doi.org/10.1016/j.brainres.2006.07.068
- Mathworks. (2021). Matlab version 2021a. Mathworks.
- McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Perception & Psychophysics, 17(6), 578–586. https://doi.org/10.3758/bf03203972
- McConkie, G. W., & Rayner, K. (1976). Asymmetry of the perceptual span in reading. Bulletin of the Psychonomic Society, 8(5), 365–368.
- Noorani, I., & Carpenter, R. H. S. (2016). The LATER model of reaction time and decision. Neuroscience & Biobehavioral Reviews, 64, 229–251. https://doi.org/10.1016/j.neubiorev.2016.02.018
- Norcia, A. M., Sampath, V., Chuan, H., & Pettet, M. W. (2005). Experience-expectant development of contour integration mechanisms in human visual cortex. Journal of Vision, 5(3), 116–130. https://doi.org/10.1167/5.2.3
- Nuthmann, A. (2013). On the visual span during object search in real-world scenes. Visual Cognition, 21(7), 803–837. https://doi.org/10.1080/13506285.2013.832449
- Nuthmann, A. (2017). Fixation durations in scene viewing: Modeling the effects of local image features, oculomotor parameters, and task. Psychonomic Bulletin & Review, 24, 370–392. https://doi.org/10.3758/s13423-016-1124-4
- Nuthmann, A., & Henderson, J. M. (2012). Using CRISP to model global characteristics of fixation durations in scene viewing and reading with a common mechanism. Visual Cognition, 20(4–5), 457–494.
- Nuthmann, A., Smith, T. J., Engbert, R., & Henderson, J. M. (2010). CRISP: A computational model of fixation durations in scene viewing. Psychological Review, 117(2), 382–405. https://doi.org/10.1037/a0018924
- Pashler, H., Carrier, M., & Hoffman, J. E. (1993). Saccadic eye movements and dual-task interference. Quarterly Journal of Experimental Psychology, 46A(1), 51–82. https://doi.org/10.1080/14640749308401067
10.1080/14640749308401067 Google Scholar
- Pestilli, F., & Carrasco, M. (2005). Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vision Research, 45(14), 1867–1875. https://doi.org/10.1016/j.visres.2005.01.019
- Pitts, M. A., & Martinez, A. (2014). Contour integration: Sensory, perceptual, and attention-based ERP components. In G. R. Mangun (Ed.), Cognitive electrophysiology of attention: Signals of the mind (pp. 178–189). Elsevier Inc.
10.1016/B978-0-12-398451-7.00014-2 Google Scholar
- Polat, U., & Bonneh, Y. (2000). Collinear interactions and contour integration. Spatial Vision, 13(4), 393–401. https://doi.org/10.1163/156856800741270
- Poynter, W., Barber, M., Inman, J., & Wiggins, C. (2013). Individuals exhibit idiosyncratic eye-movement behavior profiles across tasks. Vision Research, 89, 32–38. https://doi.org/10.1016/j.visres.2013.07.002
- Qui, C., Burton, P. C., Kersten, D., & Olman, C. A. (2016). Responses in early visual areas to contour integration are context dependent. Journal of Vision, 16(8), 1–18. https://doi.org/10.1167/16.8.19
10.1167/16.8.19 Google Scholar
- Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422. https://doi.org/10.1037//0033-2909.124.3.372
- Rayner, K., Li, X. S., Williams, C. C., Cave, K. R., & Well, A. D. (2007). Eye movements during information processing tasks: Individual differences and cultural effects. Vision Research, 47(21), 2714–2726.
- Reuter-Lorenz, P. A., Hughes, H. C., & Fendrich, R. (1991). The reduction of saccadic latency by prior offset of the fixation point: An analysis of the gap effect. Perception & Psychophysics, 49, 167–175. https://doi.org/10.3758/BF03205036
- Savage, S. W., Potter, D. D., & Tatler, B. W. (2018). The effects of array structure and secondary cognitive task demand on processes of visual search. Vision Research, 153, 37–46. https://doi.org/10.1016/j.visres.2018.09.004
- Schad, D. J., & Engbert, R. (2012). The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model. Visual Cognition, 20(4–5), 391–421. https://doi.org/10.1080/13506285.2012.670143
- Schall, J. D., Purcell, D. G., Heitz, R., Logan, G. D., & Palmeri, T. J. (2011). Neural mechanisms of saccade target selection: Gated accumulator model of the visual–motor cascade. European Journal of Neuroscience, 33, 1991–2002. https://doi.org/10.1111/j.1460-9568.2011.07715.x
- Shomstein, S., & Gottlieb, J. P. (2016). Spatial and non-spatial aspects of visual attention: Interactive cognitive mechanisms and neural underpinnings. Neuropsychologia, 92, 9–19. https://doi.org/10.1016/j.neuropsychologia.2016.05.021
- Smith, D. T., & Schenk, T. (2012). The premotor theory of attention: Time to move on? Neuropsychologia, 50(6), 1104–1114. https://doi.org/10.1016/j.neuropsychologia.2012.01.025
- Sumner, P. (2011). Determinants of saccade latency. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), The Oxford handbook of eye movements (pp. 413–424). Oxford University Press.
- Talcott, T. N., & Gaspelin, N. (2021). Eye movements are not mandatorily preceded by the N2pc component. Psychophysiology, 58(6), 1–17. https://doi.org/10.1111/psyp.13821
- Talcott, T. N., Kiat, J. E., Luck, S. J., & Gaspelin, N. (2023). Is covert attention necessary for programming accurate saccades? Evidence from saccade-locked event-related potentials. Attention, Perception & Psychophysics, 1-19. https://doi.org/10.3758/s13414-023-02775-5
10.3758/s13414?023?02775?5 Google Scholar
- Talsma, D., Mulckhuyse, M., Slagter, H. A., & Theeuwes, J. (2007). Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding. Brain Research, 1178, 92–105. https://doi.org/10.1016/j.brainres.2007.07.099
- Tatler, B. W., Brockmole, J. R., & Carpenter, R. H. S. (2017). LATEST: A model of saccadic decisions in space and time. Psychological Review, 124(3), 267–300. https://doi.org/10.1037/rev0000054
- Thigpen, N. N., Kappenman, E. S., & Kell, A. (2017). Assessing the internal consistency of the event-related potential: An example analysis. Psychophysiology, 54(1), 123–138. https://doi.org/10.1111/psyp.12629
- Thompson, K. G., Hanes, D. P., Bichot, N. P., & Schall, J. D. (1996). Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. Journal of Neurophysiology, 76(6), 4040–4055. https://doi.org/10.1152/jn.1996.76.6.4040
- Toivanen, M., Pettersson, K., & Lukander, K. (2015). A probabilistic real-time algorithm for detecting blinks, saccades, and fixations from EOG data. Journal of Eye Movement Research, 8(2), 1–14. https://doi.org/10.16910/jemr.8.2.1
- Unema, P. J. A., Pannasch, S., Joos, M., & Velichkovsky, B. M. (2005). Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration. Visual Cognition, 12(3), 473–494. https://doi.org/10.1080/13506280444000409
- Van Humbeek, N., Ernst, U., Hermens, F., & Wagemans, J. (2013). The role of eye movements in a contour detection task. Journal of Vision, 13(5), 1–19. https://doi.org/10.1167/13.14.5
10.1167/13.14.5 Google Scholar
- Van Humbeek, N., Meghanathan, R. N., Wagemans, J., Van Leeuwen, C., & Nikolaev, A. R. (2018). Presaccadic EEG activity predicts visual saliency in free-viewing contour integration. Psychophysiology, 55(12), e13267. https://doi.org/10.1111/psyp.13267
- Vo, M. L. H., & Wolfe, J. M. (2015). The role of memory for visual search in scenes. Annals of the New York Academy of Sciences, 1339, 72–81. https://doi.org/10.1038/s41562-017-0058
- Volberg, G., & Greenlee, M. W. (2014). Brain networks supporting perceptual grouping and contour selection. Frontiers in Psychology, 5, 1–17. https://doi.org/10.3389/fpsyg.2014.00264
- Vossel, S., Geng, J. J., & Friston, K. J. (2014). Attention, predictions and expectations, and their violation: Attentional control in the human brain. Frontiers in Human Neuroscience, 8, 490. https://doi.org/10.3389/fnhum.2014.00490
- Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & Von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure—Ground organization. Psychological Bulletin, 138(6), 1172–1217. https://doi.org/10.1037/a0029333
- Walker, R., Kentridge, R. W., & Findlay, J. M. (1995). Independent contributions of the orienting of attention, fixation offset and bilateral stimulation on human saccadic latencies. Experimental Brain Research, 103, 294–310. https://doi.org/10.1007/BF00231716
- Wertheimer, M. (1923). Laws of organization in perceptual forms. Psychologische Forschung, 4, 301–350.
- Yu, H., Shamsi, F., & Kwon, M. Y. (2022). Altered eye movements during reading under degraded viewing conditions: Background luminance, text blur, and text contrast. Journal of Vision, 4, 1–20. https://doi.org/10.1167/jov.22.10.4
10.1167/jov.22.10.4 Google Scholar
- Zelinsky, G. J., Loschky, L. C., & Dickinson, C. A. (2011). Do object refixations during scene viewing indicate rehearsal in visual working memory? Memory & Cognition, 39(4), 600–613. https://doi.org/10.3758/s13421-010-0048-x