Dispersion and domestication shaped the genome of bread wheat
Paul J. Berkman
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
CSIRO Plant Industry, St Lucia, QLD, Australia
Search for more papers by this authorPaul Visendi
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorHong C. Lee
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorJiri Stiller
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
CSIRO Plant Industry, St Lucia, QLD, Australia
Search for more papers by this authorSahana Manoli
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorMichał T. Lorenc
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorKaitao Lai
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorJacqueline Batley
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorDelphine Fleury
Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond, SA, Australia
Search for more papers by this authorHana Šimková
Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech, Republic
Search for more papers by this authorMarie Kubaláková
State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
Search for more papers by this authorSong Weining
State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
Search for more papers by this authorJaroslav Doležel
Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech, Republic
Search for more papers by this authorCorresponding Author
David Edwards
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
Correspondence (Tel +61 0 7 3346 7084; fax +61 0 7 3365 1176; email [email protected])Search for more papers by this authorPaul J. Berkman
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
CSIRO Plant Industry, St Lucia, QLD, Australia
Search for more papers by this authorPaul Visendi
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorHong C. Lee
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorJiri Stiller
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
CSIRO Plant Industry, St Lucia, QLD, Australia
Search for more papers by this authorSahana Manoli
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorMichał T. Lorenc
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorKaitao Lai
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorJacqueline Batley
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorDelphine Fleury
Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond, SA, Australia
Search for more papers by this authorHana Šimková
Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech, Republic
Search for more papers by this authorMarie Kubaláková
State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
Search for more papers by this authorSong Weining
State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
Search for more papers by this authorJaroslav Doležel
Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech, Republic
Search for more papers by this authorCorresponding Author
David Edwards
School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia
Correspondence (Tel +61 0 7 3346 7084; fax +61 0 7 3365 1176; email [email protected])Search for more papers by this authorAbstract
Summary
Despite the international significance of wheat, its large and complex genome hinders genome sequencing efforts. To assess the impact of selection on this genome, we have assembled genomic regions representing genes for chromosomes 7A, 7B and 7D. We demonstrate that the dispersion of wheat to new environments has shaped the modern wheat genome. Most genes are conserved between the three homoeologous chromosomes. We found differential gene loss that supports current theories on the evolution of wheat, with greater loss observed in the A and B genomes compared with the D. Analysis of intervarietal polymorphisms identified fewer polymorphisms in the D genome, supporting the hypothesis of early gene flow between the tetraploid and hexaploid. The enrichment for genes on the D genome that confer environmental adaptation may be associated with dispersion following wheat domestication. Our results demonstrate the value of applying next-generation sequencing technologies to assemble gene-rich regions of complex genomes and investigate polyploid genome evolution. We anticipate the genome-wide application of this reduced-complexity syntenic assembly approach will accelerate crop improvement efforts not only in wheat, but also in other polyploid crops of significance.
Supporting Information
Filename | Description |
---|---|
pbi12044-sup-0001-FigS1-S3.pptxapplication/, 8.5 MB | Figure S1 Network image produced by STRING representing the scale of gene networking on 7A (A), 7B (B), and 7D (C). Figure S2 Histogram displaying the number of bin-mapped EST sequences across all wheat chromosomes that have aligned to the assemblies of 7A (red), 7B (blue), and 7D (green). Figure S3 CMap image representing the comparison of genetic markers from A. tauschii against the 7D syntenic build. |
pbi12044-sup-0002-TableS1-S6.xlsxMS Excel, 675.3 KB | Table S1 Full summary of Syntenic Build statistics. Table S2 GenomeZipper of wheat group 7 chromosomes against B. distachyon, O. sativa, and S. bicolor in both syntenic (A) and nonsyntenic (B) regions. Table S3 STRING GO terms enrichment analysis with all group 7 genes used as the background. Table S4 Table listing chromosome-arm specific bin-mapped EST RBB alignment results for contigs assembled from each chromosome arm. Table S5 Read mapping statistics for Illumina 100 bp paired-end reads from 4 Australian varieties (Gladius, Drysdale, Excalibur, RAC875). TableS6 SNPs called between 4 Australian wheat cultivars (Gladius, Drysdale, Excalibur, RAC875). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410.
- Barker, G., Batley, J., O’ Sullivan, H., Edwards, K.J. and Edwards, D. (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics, 19, 421–422.
- Bekaert, M., Edger, P.P., Pires, J.C. and Conant, G.C. (2011) Two-phase resolution of polyploidy in the Arabidopsis metabolic network gives rise to relative and absolute dosage constraints. Plant Cell, 23, 1719–1728.
- Berkman, P.J., Skarshewski, A., Lorenc, M., Lai, K., Duran, C., Ling, E.Y.S., Stiller, J., Smits, L., Imelfort, M., Manoli, S., McKenzie, M., Kubaláková, M., Šimkovž, H., Batley, J., Fleury, D., Doleel, J. and Edwards, D. (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 9, 768–775.
- Berkman, P.J., Skarshewski, A., Manoli, S., Lorenc, M.T., Stiller, J., Smits, L., Lai, K., Campbell, E., Kubaláková, M., Šimková, H., Batley, J., Doležel, J., Hernandez, P. and Edwards, D. (2012) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor. Appl. Genet. 124, 423–432.
- Caldwell, K.S., Dvorak, J., Lagudah, E.S., Akhunov, E., Luo, M.-C., Wolters, P. and Powell, W. (2004) Sequence Polymorphism in Polyploid Wheat and Their D-Genome Diploid Ancestor. Genetics, 167, 941–947.
- Carollo, V., Matthews, D.E., Lazo, G.R., Blake, T.K., Hummel, D.D., Lui, N., Hane, D.L. and Anderson, O.D. (2005) GrainGenes 2.0. an improved resource for the small-grains community. Plant Physiol. 139, 643–651.
- Chantret, N., Salse, J., Sabot, F., Rahman, S., Bellec, A., Laubin, B., Dubois, I., Dossat, C., Sourdille, P., Joudrier, P., Gautier, M.F., Cattolico, L., Beckert, M., Aubourg, S., Weissenbach, J., Caboche, M., Bernard, M., Leroy, P. and Chalhoub, B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell, 17, 1033–1045.
- Chao, S., Zhang, W., Akhunov, E., Sherman, J., Ma, Y., Luo, M.-C. and Dubcovsky, J. (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed, 23, 23–33.
- Dolores Vazquez, M., James Peterson, C., Riera-Lizarazu, O., Chen, X., Heesacker, A., Ammar, K., Crossa, J. and Mundt, C. (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor. Appl. Genet. 124, 1–11.
- Dubcovsky, J. and Dvorak, J. (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316, 1862–1866.
- Duran, C., Appleby, N., Clark, T., Wood, D., Imelfort, M., Batley, J. and Edwards, D. (2009) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res. 37, D951–953.
- Dvořák, J. (2009) Crops and Models. In: Plant Genetics and Genomics ( G.M. Muehlbauer and C. Feuillet, eds), pp. 685–711. New York: Springer.
- Dvorak, J., Luo, M.C., Yang, Z.L. and Zhang, H.B. (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97, 657–670.
- Dvorak, J., Akhunov, E.D., Akhunov, A.R., Deal, K.R. and Luo, M.C. (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol. Biol. Evol. 23, 1386–1396.
- Eckardt, N.A. (2001) A Sense of Self: the Role of DNA Sequence Elimination in Allopolyploidization. Plant Cell, 13, 1699–1704.
- Food and Agriculture Organisation of the United Nations (2012) FAOSTAT Food Supply – Crops Primary Equivalent.
- Freeling, M. and Thomas, B.C. (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res. 16, 805–814.
- Gegas, V.C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., Sayers, L., Doonan, J.H. and Snape, J.W. (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell, 22, 1046–1056.
- Genc, Y., Oldach, K., Verbyla, A., Lott, G., Hassan, M., Tester, M., Wallwork, H. and McDonald, G. (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor. Appl. Genet. 121, 877–894.
- Giles, R.J. and Brown, T.A. (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor. Appl. Genet. 112, 1563–1572.
- Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N. and Rokhsar, D.S. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–1186.
- Hernandez, P., Martis, M., Dorado, G., Pfeifer, M., Galvez, S., Schaaf, S., Jouve, N., Šimková, H., Valárik, M., Doležel, J. and Mayer, K.F. (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 69, 377–386.
- Hossain, K.G., Kalavacharla, V., Lazo, G.R., Hegstad, J., Wentz, M.J., Kianian, P.M., Simons, K., Gehlhar, S., Rust, J.L., Syamala, R.R., Obeori, K., Bhamidimarri, S., Karunadharma, P., Chao, S., Anderson, O.D., Qi, L.L., Echalier, B., Gill, B.S., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Akhunov, E.D., Dvorak, J., Miftahudin,Ross, K., Gustafson, J.P., Radhawa, H.S., Dilbirligi, M., Gill, K.S., Peng, J.H., Lapitan, N.L., Greene, R.A., Bermudez-Kandianis, C.E., Sorrells, M.E., Feril, O., Pathan, M.S., Nguyen, H.T., Gonzalez-Hernandez, J.L., Conley, E.J., Anderson, J.A., Choi, D.W., Fenton, D., Close, T.J., McGuire, P.E., Qualset, C.O. and Kianian, S.F. (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics, 168, 687–699.
- Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R. and Gornicki, P. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA, 99, 8133–8138.
- Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.
- Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13.
- International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature, 436, 793–800.
- Kubaláková, M., Kovářová, P., Suchánková, P., Číhalíková, J., Bartoš, J., Lucretti, S., Watanabe, N., Kianian, S.F. and Doležel, J. (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics, 170, 823–829.
- Lai, K., Berkman, P.J., Lorenc, M.T., Duran, C., Smits, L., Manoli, S., Stiller, J. and Edwards, D. (2012) WheatGenome.info: an integrated database and portal for wheat genome information. Plant Cell Physiol. 52, e2. (1-7).
- Li, R., Li, Y., Kristiansen, K. and Wang, J. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713–714.
- Lorenc, M.T., Hayashi, S., Stiller, J., Lee, H., Manoli, S., Ruperao, P., Visendi, P., Berkman, P.J., Lai, K., Batley, J. and Edwards, D. (2012) Discovery of Single Nucleotide Polymorphisms in Complex Genomes Using SGSautoSNP. Biology, 1, 370–382.
- Luo, M.C., Deal, K.R., Akhunov, E.D., Akhunova, A.R., Anderson, O.D., Anderson, J.A., Blake, N., Clegg, M.T., Coleman-Derr, D., Conley, E.J., Crossman, C.C., Dubcovsky, J., Gill, B.S., Gu, Y.Q., Hadam, J., Heo, H.Y., Huo, N., Lazo, G., Ma, Y., Matthews, D.E., McGuire, P.E., Morrell, P.L., Qualset, C.O., Renfro, J., Tabanao, D., Talbert, L.E., Tian, C., Toleno, D.M., Warburton, M.L., You, F.M., Zhang, W. and Dvorak, J. (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl Acad. Sci. USA 106, 15780–15785.
- Matthews, D.E., Carollo, V.L., Lazo, G.R. and Anderson, O.D. (2003) GrainGenes, the genome database for small-grain crops. Nucleic Acids Res. 31, 183–186.
- Mayer, K.F., Taudien, S., Martis, M., Šimkova, H., Suchánková, P., Gundlach, H., Wicker, T., Petzold, A., Felder, M., Steuernagel, B., Scholz, U., Graner, A., Platzer, M., Doležel, J. and Stein, N. (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 151, 496–505.
- McFadden, E.S. and Sears, E.R. (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81–107.
- Nesbitt, M. and Samuel, D. (1995) From staple crop to extinction? The archaeology and history of the hulled wheats. In: First International Workshop on Hulled Wheats ( S. Padulosi, K. Hammer and J. Heller, eds), pp. 40–99. Castelvecchio Pascoli, Tuscany, Italy: Bioversity International.
- Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A.K., Chapman, J., Feltus, F.A., Gowik, U., Grigoriev, I.V., Lyons, E., Maher, C.A., Martis, M., Narechania, A., Otillar, R.P., Penning, B.W., Salamov, A.A., Wang, Y., Zhang, L., Carpita, N.C., Freeling, M., Gingle, A.R., Hash, C.T., Keller, B., Klein, P., Kresovich, S., McCann, M.C., Ming, R., Peterson, D.G., Mehboob ur, R., Ware, D., Westhoff, P., Mayer, K.F., Messing, J. and Rokhsar, D.S. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551–556.
- Šafář, J., Šimková, H., Kubaláková, M., Číhalíková, J., Suchánková, P., Bartoš, J. and Doležel, J. (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet. Genome Res. 129, 211–223.
- Salamini, F., Ozkan, H., Brandolini, A., Schafer-Pregl, R. and Martin, W. (2002) Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3, 429–441.
- Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., Kruchowski, S.S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S.M., Belter, E., Du, F., Kim, K., Abbott, R.M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S.M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J. and Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M.J., McMahan, L., Van Buren, P., Vaughn, M.W., Ying, K., Yeh, C.T., Emrich, S.J., Jia, Y., Kalyanaraman, A., Hsia, A.P., Barbazuk, W.B., Baucom, R.S., Brutnell, T.P., Carpita, N.C., Chaparro, C., Chia, J.M., Deragon, J.M., Estill, J.C., Fu, Y., Jeddeloh, J.A., Han, Y., Lee, H., Li, P., Lisch, D.R., Liu, S., Liu, Z., Nagel, D.H., McCann, M.C., SanMiguel, P., Myers, A.M., Nettleton, D., Nguyen, J., Penning, B.W., Ponnala, L., Schneider, K.L., Schwartz, D.C., Sharma, A., Soderlund, C., Springer, N.M., Sun, Q., Wang, H., Waterman, M., Westerman, R., Wolfgruber, T.K., Yang, L., Yu, Y., Zhang, L., Zhou, S., Zhu, Q., Bennetzen, J.L., Dawe, R.K., Jiang, J., Jiang, N., Presting, G.G., Wessler, S.R., Aluru, S., Martienssen, R.A., Clifton, S.W., McCombie, W.R., Wing, R.A. and Wilson, R.K. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115.
- Schnurbusch, T., Collins, N.C., Eastwood, R.F., Sutton, T., Jefferies, S.P. and Langridge, P. (2007) Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor. Appl. Genet. 115, 451–461.
- Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L.J. and von Mering, C. (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568.
- Talbert, L.E., Smith, L.Y. and Blake, N.K. (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome, 41, 402–407.
- Thomas, B.C., Pedersen, B. and Freeling, M. (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 16, 934–946.
- Vogel, J.P., Garvin, D.F., Mockler, T.C., Schmutz, J., Rokhsar, D., Bevan, M.W., Barry, K., Lucas, S., Harmon-Smith, M., Lail, K., Tice, H., Schmutz Leader, J., Grimwood, J., McKenzie, N., Huo, N., Gu, Y.Q., Lazo, G.R., Anderson, O.D., Vogel Leader, J.P., You, F.M., Luo, M.C., Dvorak, J., Wright, J., Febrer, M., Idziak, D., Hasterok, R., Lindquist, E., Wang, M., Fox, S.E., Priest, H.D., Filichkin, S.A., Givan, S.A., Bryant, D.W., Chang, J.H., Mockler Leader, T.C., Wu, H., Wu, W., Hsia, A.P., Schnable, P.S., Kalyanaraman, A., Barbazuk, B., Michael, T.P., Hazen, S.P., Bragg, J.N., Laudencia-Chingcuanco, D., Weng, Y., Haberer, G., Spannagl, M., Mayer Leader, K., Rattei, T., Mitros, T., Lee, S.J., Rose, J.K., Mueller, L.A., York, T.L., Wicker Leader, T., Buchmann, J.P., Tanskanen, J., Schulman Leader, A.H., Gundlach, H., Bevan, M., Costa de Oliveira, A., da, C.M.L., Belknap, W., Jiang, N., Lai, J., Zhu, L., Ma, J., Sun, C., Pritham, E., Salse Leader, J., Murat, F., Abrouk, M., Mayer, K., Bruggmann, R., Messing, J., Fahlgren, N., Sullivan, C.M., Carrington, J.C., Chapman, E.J., May, G.D. and Zhai, J., Ganssmann, M., Guna Ranjan Gurazada, S., German, M., Meyers, B.C., Green Leader, P.J., Tyler, L., Wu, J., Thomson, J., Chen, S., Scheller, H.V., Harholt, J., Ulvskov, P., Kimbrel, J.A., Bartley, L.E., Cao, P., Jung, K.H., Sharma, M.K., Vega-Sanchez, M., Ronald, P., Dardick, C.D., De Bodt, S., Verelst, W., Inze, D., Heese, M., Schnittger, A., Yang, X., Kalluri, U.C., Tuskan, G.A., Hua, Z., Vierstra, R.D., Cui, Y., Ouyang, S., Sun, Q., Liu, Z., Yilmaz, A., Grotewold, E., Sibout, R., Hematy, K., Mouille, G., Hofte, H., Michael, T., Pelloux, J., O'Connor, D., Schnable, J., Rowe, S., Harmon, F., Cass, C.L., Sedbrook, J.C., Byrne, M.E., Walsh, S., Higgins, J., Li, P., Brutnell, T., Unver, T., Budak, H., Belcram, H., Charles, M., Chalhoub, B. and Baxter, I. (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763–768.
- Vrána, J., Kubaláková, M., Šimková, H., Číhalíková, J., Lysák, M.A. and Doležel, J. (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics, 156, 2033–2041.
- Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.H., Bancroft, I., Cheng, F., Huang, S., Li, X., Hua, W., Freeling, M., Pires, J.C., Paterson, A.H., Chalhoub, B., Wang, B., Hayward, A., Sharpe, A.G., Park, B.S., Weisshaar, B., Liu, B., Li, B., Tong, C., Song, C., Duran, C., Peng, C., Geng, C., Koh, C., Lin, C., Edwards, D., Mu, D., Shen, D., Soumpourou, E., Li, F., Fraser, F., Conant, G., Lassalle, G., King, G.J., Bonnema, G., Tang, H., Belcram, H., Zhou, H., Hirakawa, H., Abe, H., Guo, H., Jin, H., Parkin, I.A., Batley, J., Kim, J.S., Just, J., Li, J., Xu, J., Deng, J., Kim, J.A., Yu, J., Meng, J., Min, J., Poulain, J., Hatakeyama, K., Wu, K., Wang, L., Fang, L., Trick, M., Links, M.G., Zhao, M., Jin, M., Ramchiary, N., Drou, N., Berkman, P.J., Cai, Q., Huang, Q., Li, R., Tabata, S., Cheng, S., Zhang, S., Sato, S., Sun, S., Kwon, S.J., Choi, S.R., Lee, T.H., Fan, W., Zhao, X., Tan, X., Xu, X., Wang, Y., Qiu, Y., Yin, Y., Li, Y., Du, Y., Liao, Y., Lim, Y., Narusaka, Y., Wang, Z., Li, Z., Xiong, Z. and Zhang, Z. (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035–1039.
- Wanjugi, H., Coleman-Derr, D., Huo, N., Kianian, S.F., Luo, M.-C., Wu, J., Anderson, O. and Gu, Y.Q. (2009) Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome, 52, 576–587.
- Wicker, T., Buchmann, J.P. and Keller, B. (2010) Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 20, 1229–1237.
- Wicker, T., Mayer, K.F.X., Gundlach, H., Martis, M., Steuernagel, B., Scholz, U., Šimková, H., Kubaláková, M., Choulet, F., Taudien, S., Platzer, M., Feuillet, C., Fahima, T., Budak, H., Doležel, J., Keller, B. and Stein, N. (2011) Frequent Gene Movement and Pseudogene Evolution Is Common to the Large and Complex Genomes of Wheat, Barley, and Their Relatives. Plant Cell, 23, 1706–1718.
- Woodhouse, M.R., Schnable, J.C., Pedersen, B.S., Lyons, E., Lisch, D., Subramaniam, S. and Freeling, M. (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol. 8, e1000409.
- Zerbino, D.R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829.